

- Brussels | 28th 29th January 2020
- Assessing cumulative effects to support ecosystem-based management (bridging the gap)
- CNR ISMAR Marine Science Institute Venice | Stefano Menegon

CEA's relevance to the sustainability

MSP Maritime Spatial Planning

Process by which the relevant Member State's authorities analyse and organise human activities in marine areas to achieve ecological, economic and social objectives (MSP Directive: 2014/89/EU)

SEA
Strategic
Environmental
Assessment

- Define current conditions
- Identify issues
- Evaluate alternative management actions

Transboundary, Spatially-explicit, Aggregated indicators

CEA Cumulative Effects Assessment

Bridging the gap between science and decision-making in ecosystem-based management

Oil & Gas installation

Offshore wind farm

Environmental Impact Assessment

EIA

Project / activity

Low Quantitativ

Qualitative

ype of assessmen

evel of detail

High

evel of uncertainty

CEA gradients

Supporting MSP processes: Adriatic Sea exploratory CEA

Management aim

define current conditions and identify issues

CEA aim

Transboundary cumulative effects of multiple human uses (multi-sectoral) on multiple environmental receptors (seabed habitats, fish nursery, marine mammals and turtles).

Distance Model

Maritime transport
Oil & gas extraction
Coastal & maritime tourism
Small scale fishery

Marine litter Underwater noise Inputs of organic matter Abrasion

Seabed habitats Nursery habitats Marine mammals Turtles

.....

- 5 countries
- 18 human uses
- 15 MSFD pressures (**MSFD alignment**)
- 28 environmental receptors
- Hydrodynamic modeling of the Adriatic Sea to improve pressure assessments
- Land-Sea interactions (78 rivers, 40 coastal cities). Nutrient dispersion (organic matter, nitrogen and phosphorus) and salinity
- Grid-based analysis (resolution 500 m)

Menegon et al. 2018. DOI: 10.1016/j.ecolind.2018.03.060

Supporting MSP processes: Adriatic Sea exploratory CEA

Spatial distribution of MSFD pressures

LSI Nutrients dispersion: Nitrogen and Phosphorus

Sensitivities-based modelling of the cumulative ecological effects

- Expert-based survey, interviews, literature review
- Impact extent, impact level, recovery time

e27 - MM - Marine mammals ci = 10998 (5.33 %)

Cumulative impacts from specific sea uses

Cumulative impacts on specific environmental receptors

MSP proposal: Emilia-Romagna Case Study

5.300 km² 14 municipalities 526,000 residents 38.000.000 annual overnight stays

CEA & Marine Ecosystem Services

Integrating socio-ecological dimension into the CEA procedure

Cumulative effects assessment

Marine Ecosystem services (MES)

Conservation objectives

- A) Preservation of the integrity of Essential Fish Habitats (EFHs) of fish species of high commercial value
- B) Protection of high-conservation value species (mammals and turtles), currently severely threatened by human activities

Farella et al. 2020 (Under review)

Conservation proposal

- 1 Biological Protection Area (BPA)
- 2 priority areas for the protection of sea turtles and bottlenose dolphins

Data Network

Marine Environment Monitoring Service Climate Change Service

Europe's eyes on Earth

MarLIN – MarESA Marine Evidence based Sensitivity Assessment

Data & information needs

Ocean modeling
Species distribution modeling
Hydrodynamic modeling
Marine connectivity modeling
Ecological modeling
(e.g. Ecospace)

OBIS – occurrences Copernicus – sea water velocity

Geoplatform: data repositories and tools

Global distribution within the water column of recorded marine biodiversity (Webb, Vanden Berghe, O'Dor, 2010. Source: OBIS)

The global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean

 Strengthen overall knowledge on deep pelagic ocean.

Key challenges

- Improve access to marine data, including economic, social and environmental information
- Encourage the deposition of sample/data in open data and interoperable repositories
- Improve effects and impact assessment (ecological response)
 - Overcome weakness on expert judgments to model Pressure-Environmental receptors relationships
 - Improve evaluation of indirect interactions and effects (especially at broader scales)
 - Three-dimensional and multi-temporal (e.g. seasonality) aspects (time-series)
- Climate change issues
- Need for methods to better take into account Marine Natural Capital and its direct and indirect benefits to maritime commercial and non-commercial activities