

Commission européenne/Europese Commissie, 1049 Bruxelles/Brussel, BELGIQUE/BELGIË - Tel. +32 22991111
Office: J-79 - Tel. direct line +32 229-+ 32 296 40 13

francky.callewaert@ec.europa.eu

EUROPEAN COMMISSION
DIRECTORATE-GENERAL FOR MARITIME AFFAIRS AND FISHERIES

Integrated Fisheries Data Management

Version 1.02

INTEGRATED FISHERIES DATA MANAGEMENT PROGRAMME

PHASE 1: FISHERIES CONTROL AND MONITORING

FLUX

Subject: Routing scenarios embedded in the FLUX Transportation layer

1. INTRODUCTION

This document describes the various routing scenarios available in the FLUX

Transportation layer. It contains the detailed description of the FLUX Transport

Protocol version 1, i.e. how FLUX Transport v1 systems should interoperate in a

FLUX network.

The intended readership is anyone involved in implementing a FLUX Transport v1

systems, or anyone who needs a thorough understanding of how FLUX Nodes and

Endpoints function in a FLUX network.

Please make sure to read first the document named General principles of the FLUX

transportation layer v1.0.

2. DISCLAIMER

As it stands today, ideas and concepts presented in this document are the private

intellectual property of the European Commission.

Please be aware that this document is work in progress, so it can contain errors.

Most of the text and drawings should be complete and accurate except the

discussion on generation of automatic email notifications. Drawings on pages 23 to

29 also need to be modified to bring them in line with the text. Should you find an

error somewhere in this document please report it to fish-fidesinfo@ec.europa.eu.

mailto:fish-fidesinfo@ec.europa.eu

2

3. VERSION AND HISTORY

Version Author Date

1.02 Matthias Petofalvi (added disclaimer) 05/02/2014

1.01 Matthias Petofalvi (small adjustments) 16/09/2013

1.0 Matthias Petofalvi (Full rewrite to align the document

with for FLUX Transport protocol v1)

12/09/2013

0.6 Matthias Petofalvi (Sections 5.1 and 5.2 reworked,

section 5.7 added, small additions to sections 6.2 and

6.3)

03/12/2012

0.5 Matthias Petofalvi (Chapter 5 reworked) 08/09/2011

0.4 With comments Francky Callewaert 07/09/2012

0.3 Matthias Petofalvi (New sections added) 05/09/2012

0.2 Matthias Petofalvi (Comments Francky Callewaert) 31/08/2012

0.15 Matthias Petofalvi (Preliminary version for FLUX v1) 27/07/2012

4. PRINCPLES OF THE FLUX TRANSPORT PROTOCOL

4.1. Envelope Types

FLUX Transport protocol describd in this document uses two kinds of FLUX

Envelopes:

(1) Message Envelopes wrap any XML business message and specifies a

Message Timeout, a date/time limit past which the business message is

considered to be expired. It also specifies if an Acknowledge-of-Receipt is

expected upon successful delivery at the final destination. Optionally, it can

also specify a list of business contact people email addresses to be informed

of transmission status as a last resort when systems are not able to do it in

time.

(2) Status Envelopes are used to report asynchronously the transmission status of

Message Envelopes, either Acknowledge-of-Receipt or permanent

transmission failures (a.k.a. single faults). Transmission status of Status

Envelopes (a.k.a. double fault) is not reported asynchronously.

Note that Status Envelopes never contain any business response.

4.2. Working through Intermediary Nodes

FLUX Envelopes need not reach their final destination directly. They can pass

through store-and-forward intermediary systems (FLUX Nodes) on their way to

their final destination (FLUX Endpoint). This greatly simplifies the seamless

aggregation of multiple systems into one big network, because each intermediary

system needs only know about its directly connected peers.

3

FLUX Envelopes are transmitted from one FLUX system (Endpoint or Node) to the

next as part of a Web Service call on a network connection.

Notes:

– There may exist more than one possible route from the Envelope originator

to its final destination.

– Message and Status Envelopes need not follow the same path.

Whenever possible, FLUX systems must try to report application-specific errors to

other FLUX systems rather than report them to people. The FLUX Transport

protocol allows doing it either synchronously (i.e. on the same connection through

which an Envelope is received) or asynchronously (i.e. after the Envelope sender

has disconnected). During each transmission from one system to the next:

 first, the sending system sends the Envelope (as part of the Web Service

Request);

 then, the receiving system sends back a FLUX Acknowledge response on the

same network connection synchronously, indicating whether the Envelope was

received successfully, understood and accepted (stored) for further processing, or

not (the Web Service Response). During this synchronous validation phase, at

minimum, the receiving system must verify that the origin of the Envelope is

trusted and that it knows a return route back to its originator so that further

processing can happen asynchronously (i.e. after connection with the sender is

terminated). The latter check is necessary because the receiving system must

ensure it will know where to send any subsequent FLUX Acknowledge response

so that it eventually reaches the Envelope originator.

Every FLUX Acknowledge response will indicate whether the reported transmission

status is permanent/final transmission status (one that will never change for this

Envelope) or a non-permanent/non-final transmission (e.g. when the transmission

will be retried later). There are 4 possible FLUX Acknowledge response types:

(1) Acknowledge-of-Receipt: a permanent/final transmission status indicating

that the Envelope has reached its final destination Endpoint;

(2) Accepted: a non-permanent/non-final transmission status indicating the

receiver Node has accepted the Envelope for further processing but is not the

final destination for that Envelope – or doesn't know yet if it is or not – so

anything can still happen to the Envelope;

(3) a temporary transmission failure report, a non-permanent/non-final

transmission status meaning the receiving system is currently unable to

accept the Envelope but could be able to do it later, so the sender can retry

the transmission later;

(4) a permanent/final transmission failure report, meaning that either the

Envelope is bad or the receiving system has received instructions not to

process it;

4

FLUX Acknowledge responses of types (1) and (4) above indicating a

permanent/final transmission status can be forwarded asynchronously when

embedded into a Status Envelope. Permanent/final transmission status of Message

Envelopes must be forwarded asynchronously in this way.

FLUX systems may also craft Status Envelopes themselves to report any

permanent/final transmission status generated locally. This allows some of the

validation of Message Envelopes to happen asynchronously. This is useful for

performance reasons.

Like every system, FLUX systems are expected to occasionally fail in unanticipated

ways and generate a non-FLUX synchronous error response. It is important that

every such error response indicates whether it is permanent or not, so it can be

mapped to one of the FLUX Acknowledge types (3) or (4) above. For example,

HTTP 4xx responses will map to FLUX Acknowledge type (3) whereas HTTP 5xx

responses whatever their payload will map to type (3).

Notes:

– Use of SOAP Faults is not required by the FLUX Transport protocol.

SOAP Faults are tolerated only as a last resort and only for reporting non-

permanent/non-final statuses (a.k.a. server errors). This is a WS-I Basic

Profile 1.2 recommendation resulting from the the fact an HTTP 5xx

response payload may be removed by HTTP proxies or gateways in along

the way from the FLUX sender system to the receiver system. Once the

SOAP Fault payload is removed, it becomes impossible to determine

whether the reported error was temporary or permanent.

– In order to limit the traffic over the network and the load on FLUX

systems, type (1) synchronous FLUX Acknowledge responses

(Acknowledge-of-Receipt) will typically not be reported asynchronously

unless the Message Envelope originator has specifically asked for it. If

ever a FLUX system receives a Status Envelope containing such an FLUX

Acknowledge response while the Message Envelope originator hasn't

specifically asked to receive it, it shall preferably drop it silently.

– Type (2) and (3) synchronous FLUX Acknowledge responses reporting a

non-permanent/non-final shall not be forwarded asynchronously. If ever a

FLUX system receives a Status Envelope containing such an FLUX

Acknowledge response, it shall preferably drop it silently.

4.3. Token-based Operation

FLUX Transport works like a token-based protocol where the Envelope plays the

role of the token. Once a system has accepted an Envelope – whatever its type – it

becomes responsible for either transferring the responsibility to another system or

reporting a final permanent status for the Envelope (a success or failure report).

Only one single token exists for that Message Envelope in the network at any given

point in time. How exactly an Envelope is to be processed depends on the Envelope

type:

5

(1) Message Envelopes: the system must determine if it is the final destination

(Endpoint) for the Message Envelope. If so, it must deliver it to the local

business layers in charge of processing the embedded business message.

Additionally, if the sender has asked for an Acknowledge-of-Receipt, then it

must craft and send out a Status Envelope to report this event. On the other

hand, if it is not the final destination, then it must determine a next

(intermediary or final) system towards the Envelope's final destination, and

must have this system accept the Envelope. A Message Envelope must be

processed before its Message Timeout elapses. In case a Message Envelope

cannot be transferred anywhere in due time, the system must give up

transferring the Message Envelope and report to the original Message

Envelope originator by crafting and sending out a Status Envelope indicating

the reason for the failure. If a Status Envelope was crafted in relation to the

Message Envelope, either an Acknowledge-of-Receipt or a failure report,

then the system is considered responsible for as long as this Status Envelope

has not been accepted by another system.

(2) Status Envelopes: the system must determine if it is the final destination

(Endpoint) for the Status Envelope. If so, it must report the Message

Envelope transmission status information embedded inside the Status

Envelope to the local business layers which have generated this Message

Envelope. On the other hand, if it is not the final destination, then it must

determine a next (intermediary or final) system towards the Envelope's final

destination and have this system accept the Envelope. Transmisison of a

Status Envelope should go on long after its associated Message Envelope has

timed out. However, if the system is still responsible for a Status Envelope at

the time its Message Timeout elapses, then it must immediately inform the

business contact people by email of the embedded status information. At the

same time, it should also report to the FLUX Transport system

administrators in charge of the systems which failed to accept the Status

Envelope so that they have them repaired.

Each Message Envelope is guaranteed to have at most one single final transmission

status, because:

 A FLUX Transport system can only propagate a Message Envelope for as long as

no Status Envelope has been crafted for it.

 Only one single Status Envelope may be crafted by any single system for any

given Message Envelope.

 Once a Status Envelope has been crafted for a Message Envelope, further

transportation of that Message Envelope becomes prohibited, so the Message

Envelope cannot be processed by any other system.

 No other system can forward this same Message Envelope or craft a Status

Envelope for it, because only one single token may exist any any point in time.

Note that there isn't a 3
rd

 type of Envelopes to report transmission status of Status

Envelopes asynchronously. Consequently:

 Acknowledge-of-Receipt is not possible for Status Envelopes.

6

 Status Envelopes can only be rejected synchronously. Asynchronous reporting of

Status Envelope transmission failures (a.k.a. double faults) is not possible. A

failure in processing a Status Envelope is a situation from which the FLUX

Transport protocol cannot recover on its own. These events can only be reported

by email to FLUX system administrators. Hopefully, by allowing Status

Envelopes to live longer in the network, double faults become less likely.

Notes:

– Even in the absence of retransmissions, a FLUX system could mistakenly

issue asynchronously a Status Envelope containing a copy of a

permanent/final transmission status previously reported in a synchronous

response. This is not a problem, as long as both transmission statuses are

the same.

– Race conditions could occur on Nodes as a consequence of unsynchronized

Node clusters, network topology changes during propagation of an

Envelope across a big network, or because of other deficiencies affecting

FLUX systems in the network that make them "stutter" occasionally and

propagate multiple copies of the same Envelope. This is not a problem, as

long as all resulting Status Envelopes report the same transmission status.

4.4. Transport-level Retransmissions

Transmission retries are naturally performed by systems after transmission failures,

when they are still in hold of the token. However, retransmission of a past Message

Envelope can also be initiated by the Envelope originator Endpoint, or in fact by

any system in the network, when the originator loses patience or suspects its

Envelope was swallowed by a bogus Black Hole system. Precautions have to be

taken by all systems in the network to ensure that:

 FLUX network remains consistent over time, meaning that a given business

message can have no more than one single permanent/final FLUX transmission

status (either an Acknowledge-of-Receipt or permanent/final error), and

 FLUX implements At-Most-Once Reliable Messaging, which requires that

business message duplicates must never reach the business layers.

Message Envelopes are uniquely identified by some unique numbers written on

them by the originator. All Message Envelopes sharing these same numbers are

assumed to contain copies of the same business message. These unique same

numbers also serve to uniquely identify the correlated Status Envelope.

(a) All FLUX systems generating or receiving synchronously or

asynchronously a final transmission status for a Message Envelope shall

remember that status at least for as long as the Message Envelope hasn't

expired, even if they have never received the actual Message Envelope

itself.

7

(b) If a Message Envelope with the same unique numbers is seen again, it

must be synchronously acknowledged using the same FLUX transport

status as remembered for the original Message Envelope.

(c) After acknowledging a Message Envelope duplicate, the system may not

process it any further. In particular, Nodes will not forward the Message

Envelope and Endpoints will not submit it to the business layers.

Notes:

– When an expired Message Envelope is received, it may no longer be

processed. Normally, the system must report a synchronous Message

Timeout status. However, if a permanent/final status is known for the

Envelope, the system may report this status synchronously instead

– Retransmission of a Message Envelope will result in the retransmission of

the associated Status Envelopes only by those systems which remember its

final transmission status. Those systems which do not remember it will

simply forward the Message Envelope normally. If the original Message

Envelope was processed already, then sooner or later the duplicate will

reach a system which remembers it block it from being processed any

further. In the worst case, this system will be the final destination

Endpoint.

– If even the final destination Endpoint does not remember of the Message

Envelope final transmission status, then it means the original Message

Envelope was actually never processed, so the duplicate will be processed

as a new Message Envelope.

– Systems receiving a duplicate of a Message Envelope which is still being

processed (i.e. for which it still holds the token) should avoid processing it

a second time. Instead, they should synchronously acknowledge it using

the non-permanent Accepted response and then drop the duplicate. At the

same time, any pending transmission of the original Message Envelope

should be rescheduled to happen immediately. This way, Message

Envelope retransmissions will act like shaking the coconut tree, hasting the

drop of the fruit.

– Status Envelopes shall never be retransmitted by any system unless it holds

the Envelope token.

8

5. TRANSMISSION SCENARIOS USING THE FLUX TRANSPORT PROTOCOL

After this boring but necessary theory introduction, we shall now examine how

FLUX systems will behave in some real-life scenarios.

5.1. Basic Workflow

The most trivial scenario is that of a Message Envelope containing a FLUX

Business request or response message (depicted as the "FLUX MSG" plain blue

arrow in the schema below) is successfully transported from a Sender Application

running on the originating Endpoint A to a Receiving Application running on the

destination Endpoint B through an in-between FLUX intermediary Node N, all

happening before the Message Envelope Timeout elapses. The Message Envelope

does not ask for any Acknowledge-of-Receipt. Here is a messaging diagram that

shows what happens in that case. The blue hollow arrow represents a Web Service

connection and contains both the FLUX request (Message Envelope) as the blue

plain arrow and the FLUX response (synchronous Acknowledge) as the green

"ACK: Accepted" arrow:

Because no error needs to be reported back by N to A and because A also did not

ask for an Acknowledge-of-Receipt, no Status Envelopes are involved in this

scenario. This is very efficient overall. However, until the Message Timeout has

elapsed, A has no ways of knowing whether the business message was actually

delivered to its final destination or it is still being retried somewhere along the way.

A will only know for sure that transmission was successful if soon after Timeout has

elapsed and A still hasn't received any Status Envelope nor did business contacts

receive any error emails. If A must know the status immediately when it is

9

available, then it must ask for an Acknowledge-of-Receipt to be sent back by the

FLUX network.

5.2. Reliable Messaging

A more interesting variant is when the business cannot wait and asks for an

Acknowledge-of-Receipt to be delivered so as to have End-to-End Reliable

Messaging. Here is another messaging diagram that shows how what happens in

that case. Note the difference between:

 Message Envelopes ("FLUX MSG" plain blue arrows) encapsulating the

Business Message A to B, propagating asynchronously from A to B inside their

own Web Service connections (hollow blue arrows);

 Status Envelopes propagating the Acknowledge-of-Receipt in reverse direction

from B to A ("FLUX STAT: AOR" green arrows) using their own Web Service

connections (hollow green arrows);

 Synchronous Acknowledgements responses ("ACK: Accepted" solid green

arrows) for both types of Envelopes in the same connection (same hollow arrow)

and propagating synchronously only (not in Status Envelopes).

Here, you can see clearly how a FLUX Status message is nothing more than a

FLUX Acknowledge response encapsulated into a FLUX Envelope. The same list of

FLUX status code values is used in both synchronous (ACK) or asynchronous

(STAT) Acknowledge responses.

10

This scenario can be made simpler if B is fast enough to find out is the final

destination for the message synchronously, while the incoming connection with N is

still open. In that case, B can send an Acknowledge-of-Receipt Acknowledge

synchronously immediately upon receipt of the Message Envelope, instead of a

mere Accepted Acknowledge response. This is typically how Endpoints should

behave. Following this simplified scenario, everything happens as before with the

exception that:

(1) Upon reception of a Message Envelope, B sends back a synchronous

Acknowledge-of-Receipt immediately in the same network connection in

which the Message Envelope was received, using a special kind of

synchronous Acknowledge response "ACK: AOR". It uses the same special

FLUX status code as used in a "STAT: AOR" that indicates it is an

Acknowledge-of-Receipt. Then, B no longer needs to craft a separate Status

Envelope.

(2) When N receives the synchronous Acknowledge-of-Receipt from B, it

simply wraps it inside a Status Envelope that can be scheduled for

transmission back to A asynchronously as in the previous case.

This variant is called the Simplified Process and is illustrated below:

B essentially delegates the job of crafting the Status Envelope to the previous-hop

Node. This way of doing has three key advantages:

 It's inherently faster because it does away with one asynchronous message. If

there are no intermediary Nodes between A and B, the FLUX transmission is

fully synchronous.

11

 It allows for simpler FLUX implementation in those Endpoints that support it,

because they don't need to run an asynchronous loop.

 It guarantees the destination Endpoint will never acknowledge reception too late,

because Web Service request and response are performed atomically.

All FLUX Nodes must support Acknowledgement-of-Receipt according to both the

General and the Simplified Process. Endpoints can choose whichever Process to use

for each Envelope individually, but the use of the Simplified Process is strongly

encouraged every time it is possible. Whichever Process an Endpoint uses is

completely transparent to the other Endpoint with which it is communicating over

FLUX.

Note that the same idea also applies to Nodes and Endpoints reporting a permanent

or final transmission failure synchronously whenever possible.

In order to ease further scenario descriptions, in the rest of this document the

synchronous positive or negative Acknowledgement responses will no longer be

represented. Also, the network connection to the system (final destination or

not) which generates the final transmission status (positive or not) will be

represented as one single hollow arrow with dashed border. Depending on

whether this system uses the general or the Simplified Process, this hollow

dashed arrow actually represents a separate Web Service connection (FLUX

STAT) or the synchronous response of the still-running connection (ACK)..

So, our first scenario can be represented with the simpler diagram below:

12

5.3. Workflow variations

A variant that comes immediately to mind is the case the "FLUX MSG" Message

Envelope is actively and permanently refused by B. (This type of error is often

referred to as a "Client Error" because it is imputable to the client system sending a

bad request rather than to a problem on the receiving server.)

This can happen for many different reasons including but not limited to:

 the Envelope cannot be understood by B, or its Dataflow is unknown to B

 N is unknown or unauthorized in FLUX layers of B

 FLUX layers in B have been instructed not to accept this Dataflow form A

A permanent delivery error message is then returned by B, either in the form of a

negative synchronous Acknowledge (under the Simplified Process) or as an

asynchronous negative Status Envelope (General Process), all using a status code

indicating a permanent error. This is illustrated below:

Note that in this scenario, the permanent/final transmission failure status is reported

by the systems in due time, before the Envelope Timeout elapses. Therefore, no

email is sent to anyone by default.

Of course, if the error returned by B were a server error (an error that is considered

temporary), or if B could not be contacted by N, then the Node would simply have

retried the delivery, time permitting. This will be discussed further down this

chapter. But before we delve into that, let's examine what can happen with the

FLUX STAT message from N back to A.

13

A can suffer temporary problems occasionally. For example, it could be overloaded

to the point it refuses some incoming requests. Or it could be down for maintenance.

In those cases, the Status Envelope transmission N to A is not always successful

upon the 1
st
 try. If it fails with such kind of temporary error (usually referred to as a

Server Error, as opposed to the Client Errors explained earlier), then N waits a bit

and retries. The wait time is chosen in such a way as to avoid overloading FLUX

systems while still being small enough so that there will be room for several retries

before the original Envelope from A times out. This Message Envelope Timeout is

specified by A on a per-Envelope basis, so individual business messages can have

their own higher or lower priority level reflected in the Node retry strategy.

14

This works similarly in case of a negative Status Envelope:

In the scenario above, the permanent/final transmission failure status could still be

reported by the systems in due time, before the Envelope Timeout elapses.

Therefore, no email is sent to anyone by default.

Should a Status Envelope transmission still be pending when the original Message

Envelope form A times out, then an email can be sent back by N to the people in

charge of the business in A, if they want it. This way, they can take over the FLUX

automatic system and engage manual fall-back procedures as required by the

business. A successful operation (Acknowledge-of-Receipt) will be reported using a

Warning Email (disabled by default) whereas an error will be reported by means of

an Error Email (enabled by default).

Note that emails are always optional. Business people in A can decide on a per-

Message Envelope basis on which emails (error, warning, information, debugging,

none) they want to receive from the FLUX Transport network. Depending on this

flag in the Message Envelope, some of the emails mentioned above may not exist.

Beside emails sent or not to business people, technical contact persons in charge of

the non-working FLUX system A will always be notified, so they are given a

chance to investigate and fix the problem in the FLUX layers of A before the next

Envelope comes in.

From a technical point of view, N needs not wait for the timeout period to expire

before sending the email to A. Indeed, by the time it has failed a transmission to A it

knows already when it will retry it next. If N it realizes this next transmission

attempt will happen after the Envelope Timeout, N can take action immediately

without actually waiting for the Timeout. Anticipating the timeout in such a way is a

15

good thing, because emails also take time to reach their recipients. This can

compensate somewhat. These scenarios are illustrated below.

16

After it has sent the Warning or Error email, the FLUX Node N will continue to

retry sending the Status Envelope for some reasonable period of time, so normally

even though the business contact people had to take over manually right after the

timeout, at some point in time the FLUX Endpoint A should be able to receive the

Status Envelope for its original Message Envelope, as shown above. Not that it

matters that much anymore since people have long taken over manually anyhow.

But it's cleaner to have the status logs up to date in all systems. Only in case the

FLUX Endpoint A keeps failing for a very long time, there is a potential for the

Status Envelope be lost forever.

Now, let's examine what can happen if B cannot be reached by N or returns a

temporary error (Server Error) back to N. If the Message Envelope asked for

information emails to be sent, N will send a "Will Retry" information email to

Business Contact people in A at the time it schedules a failed Message Envelope

transmission for later retry. Then, it proceeds exactly as explained previously in the

context of retried transmissions N to A. Again, the waiting time will be decided in a

way as to allow several retries before the Envelope times out, while at the same time

keeping the load on the N system and on the network to acceptable levels.

If everything else succeeds quickly enough, N can keep the whole workflow within

the Timeout, as shown in the diagrams on the next page.

17

Notice the Will Retry information email that N can send upon request to inform A

that transmission of its Message Envelope is getting delayed. Remember this email

is optional as well and in most cases will just not exist.

18

Another variation is the corner scenario whereby N receives a Status Envelope just

before the Timeout kicks in so N has no time to report it back to A. In this case, an

email is sent back to the business contact people in A so that they can take over

manually. That email is a warning email or an error email depending whether the

Message Envelope was accepted by B or not. Note that, on rare occasions, the

Status Envelope may eventually arrive at A before the email is read by the business

people, making it look like redundant, as illustrated below.

At that point, the transmission back to A may as well take more than one attempt,

and it may fail completely if A is down for too long, just as in the previous

scenarios. From the Timeout point onwards, nothing changes compared to the

previous scenarios. Below is an example in the case of a successful Acknowledge-

of-Receipt from B at the 2
nd

 attempt that N can only transmit back to A at the 2
nd

attempt as well. Notice the warning email sent by N to A when the Message

Envelope times out.

Remember these emails are all optional. If business people in A don't need to

receive any emails, they won't receive any.

19

Yet another scenario is the case when transmission to B can keep failing on Server

Errors up to the expiration of the Timeout. In that case, the Message Envelope is

cancelled: N crafts a FLUX permanent error Status Envelope and sends it back to A

as quickly as it can. Meanwhile, it also sends an error email to business contact

people in A so they can engage manual fallback procedures, unless this feature was

disabled in the Message Envelope. In any case, a technical error report is also sent

by email to the people in charge of FLUX Endpoint B so they can investigate the

issue with their Endpoint.

From a technical point of view, N need not wait for the timeout period to expire

before cancelling the Envelope. Indeed, once it has failed a transmission to B it will

always determine when to execute the next retry. Then it can compare that value

with the Timeout without actually waiting that long. So, N can take action slightly

before the timeout actually expires. Anticipating the timeout is a good thing,

because it can make it possible for the Status Envelope to reach A in due time,

hence avoiding any emails to business contact people. This scenario is illustrated

below:

20

Of course, sometimes the Status Envelope may still arrive too late, so emails could

still be sent to business contact people:

Or it can even never succeed if the FLUX system A is down for a very long time.

When N gives up completely on a Status Message after the Timeout and the people

in charge of the FLUX system A have not yet been warned, N sends them an email.

21

5.4. Potential issues not using the Simplified Process

As explained in the previous chapter, it helps to have the destination Endpoint B

acknowledge receipt of the Message Envelope synchronously. But it's not always

possible to do so. B might prefer to defer the final resonse acknowledge for practical

reasons. For example, B might decide to perform some computationally intensive

checking before before deciding if the Envelope is to be accepted for local

processing or rejected at the FLUX transportation level. (Please note that, even if a

business request Message Envelope is accepted at the FLUX Transportation level, it

can still be rejected by the business layers by means of a negative business response

Message Envelope. It is the responsibility of the business to implement this

behaviour.) Another case where the Simplified Process won't apply is when the

FLUX system following N is another Node, or a hybrid FLUX system that

processes some Envelopes locally (like an Endpoint) while forwarding others (like a

Node), based on the Message Envelope content.

In the event the B does not use the Simplified Process when answering to N, then in

addition to the above scenarios some further complications can arise.

A first possible scenario is the case when B just sends nothing back to anyone after

the synchronous response. It can happen if it accepted the Envelope and A had not

asked for an Acknowledge-of-Receipt. In any case, the status of the transmission at

B is simply unknown to N at the time it has to inform the business contact people at

A. N no longer has the "token" so it cannot cancel the Message Envelope any more.

If it doesn't hear from B at the Timeout time it can only assume everything was OK.

! DISCUSSION OF EMAIL HANDLING ONLY COMPLETED SO FAR !

22

Another possible scenario is when B has to return a permanent/final transmission

failure report to N but fails to do so in due time for whatever reason. Maybe the

Message Envelope is only acknowledged or rejected by B after the Timeout who

will soon send back a Status Envelope to N. Maybe it has just been accepted by B

and an Acknowledge-of-Receipt Status Envelope will follow shortly. Maybe a

Status Envelope was sent using through a direct route from B to A, bypassing N

completely. N can no longer cancel the Message Envelope as it did in one of the

previously examined scenarios, because it no longer has the "token". In that case

really, there is nothing N can do. This potentially very problematic situation is

illustrated on the next page.

As long as B does not know what transmission status to report, there is not much it

can do, either. As soon as B knows this status, it must report it to A using a Status

Envelope. As we have seen already in case of a Node, B may also have to send a

warning email or an error email to business contacts in A if transmission of the

Status Envelope cannot complete before the Timeout time. If the Status Envelope is

only crafted after the Timeout obviously such an email is sent immediately, at the

same time Status Envelope's send loop starts, assuming the business at A wants that

email.

The case where N finally receives a Status Envelope before Timeout has been

covered already in a previous scenario.

Now, if N receives a Status Envelope after timeout has expired, it should normally

not send any email to business contacts, because this was supposedly done already

by B (the system which was in hold of the "token" at Timeout time). N will simply

try to forward the Status Envelope back to A, and inform FLUX Transport Admins

at A only if it can't.

23

But clocks of N and B systems could drift slightly. Care must be taken at least one

email is sent to business contacts whenever it's needed no matter the clock drift. To

avoid problems, N must also send an email to business contacts if it received the

Status Envelope during a small "Timeout Grey Zone" period starting at timeout time

and finishing very shortly after, in the case it couldn't forward the Envelope

immediately (and assuming the business at A wants that email), As a result and on

very rare occasions, duplicate error or warning emails could be received by business

contacts in A, as depicted on the next page.

Note that the "Timeout Grey Zone" can be measured by comparing the transmission

timestamp at the Endpoint (which is transmitted together with the Envelope as part

of the Web Service call) and the local time at N.

If an Acknowledge-of-Receipt was asked by the business, and depending on the

business, the originator Endpoint A must take care of the business people should the

Message Envelope transmission status still be unknown after the Timeout has

elapsed. This could be done using email or using any other means agreed between

the business domain and the FLUX Transport layers on that Endpoint.

24

Business

Message
Business

Message

Sender

Application

Receiving

Application

FLUX REQ/RSP

FLUX Node

N

Business

Domain

FLUX

Messaging

Layers

Originator

Endpoint

A

Destination

Endpoint

B

T
im

e
o

u
t

Send

Loop FLUX REQ/RSP

Timeout

Email Timeout

Email

?
Send

Loop

Send

LoopFLUX STAT: Forwarded

(The diagram above shows an optional "FLUX STAT: Forwarded" message instead

of the optional "Forwarded" notification email. This is a mistake.)

It may very well all end up there. Or, in an alternative scenario some time later B

may finally respond with a positive or negative final transmission status. Should that

happen, N will try its best to forward it back to A, irrespective of the fact the

Envelope has already timed out and a Timeout Error email has already been sent:

Business

Message
Business

Message

Sender

Application

Receiving

Application

FLUX REQ/RSP

FLUX Node

N

Business

Domain

FLUX

Messaging

Layers

Originator

Endpoint

A

Destination

Endpoint

B

T
im

e
o

u
t

Send

Loop

?
FLUX REQ/RSP

Timeout

Email

Timeout

Email

FLUX STAT: OK

ERROR
FLUX STAT: OK

Send

Loop

FLUX STAT: OK

Send

Loop

Send

LoopFLUX STAT: Forwarded

(The diagram above shows an optional "FLUX STAT: Forwarded" message instead

of the optional "Forwarded" notification email. This is a mistake.)

25

People in charge of the FLUX system on A will be warned by email should N give

up at this point:

Business

Message
Business

Message

Sender

Application

Receiving

Application

FLUX REQ/RSP

FLUX Node

N

Business

Domain

FLUX

Messaging

Layers

Originator

Endpoint

A

Destination

Endpoint

B

T
im

e
o

u
t

Send

Loop

?
FLUX REQ/RSP

Timeout

Email

FLUX STAT: OK

Timeout

Email

Send

Loop

FLUX STAT: OK

ERROR

FLUX STAT: OK

ERROR

Send

Loop

Error

Email

Send

LoopFLUX STAT: Forwarded

(The diagram above shows an optional "FLUX STAT: Forwarded" message instead

of the optional "Forwarded" notification email. This is a mistake.)

Notice that in all three scenarios above N offers the option for business contact

people in A to ask to be notified by email as soon as the Envelope is forwarded by

some Node in the network. This is achieved by raising the default verbosity level in

the Message Envelope from the default ERROR to at least INFO. If this option is

used, A may in fact receive a mixture of "Will Retry" and "Has Forwarded"

debugging emails, as show below. This option is not meant to be used for all

Envelopes. It is there only for troubleshooting obscure transmission problems in the

network.

26

Business

Message

Business

Message
Business

Message

Sender

Application

Receiving

Application

FLUX REQ/RSP

FLUX Node

N

Business

Domain

FLUX

Messaging

Layers

Originator

Endpoint

A

Destination

Endpoint

B

FLUX REQ/RSP

Send

Loop

Send

Loop

ERROR
Send

Loop

T
im

e
o

u
t

FLUX STAT: Will Retry

FLUX REQ/RSP

FLUX STAT: OK

Send

Loop

FLUX STAT: OK

Timeout Email

?
Send

LoopFLUX STAT: Forwarded

(The diagram above incorrectly shows optional "Forwarded" and "Will retry"

notification emails as FLUX STAT Envelopes. This is a mistake.)

5.5. Problems with Chained Routes

Chaining several FLUX Nodes on a route is certainly possible. Nodes cannot

acknowledge using the Simplified Process like Endpoints do. So, the potential

complications explained above resulting from not using the Simplified Process

always apply at every Node.

Another (minor) problem is that, because all communications are asynchronous,

each added Node incurs an additional transmission delay. Should the Message

Envelope Timeout be long enough, the simple case looks like this:

27

Business

Message
T

im
e

o
u

t

Sender

Application

FLUX REQ/RSP

FLUX Node

Send

Loop

Send

Loop

FLUX Node

Send

Loop

FLUX REQ/RSP

FLUX STAT: OK

FLUX STAT: OK

FLUX REQ/RSP

FLUX STAT: OK

Send

Loop

Send

Loop

Because of the longer propagation delay incurred when transmitting over long

routes, the likelihood of the Status Envelope arriving too late is higher, leading to

more frequent spurious Timeout Error emails being sent to business contacts, as

illustrated below:

Business

Message

T
im

e
o

u
t

Sender

Application

FLUX REQ/RSP

FLUX Node FLUX Node

FLUX REQ/RSP

FLUX STAT: Will Retry

FLUX REQ/RSP

FLUX REQ/RSP

Timeout Email

FLUX STAT: Will Retry
FLUX STAT: Will Retry

FLUX REQ/RSP

FLUX STAT: OKTimeout Email

FLUX STAT: OK

FLUX STAT: OK

Send

Loop

FLUX STAT: Forwarded
Send

Loop

FLUX STAT: Forwarded Send

LoopFLUX STAT: Forwarded

ERROR

ERROR
Send

Loop

Send

Loop

Send

Loop

Send

Loop

Send

Loop

Send

Loop

Send

Loop

Send

Loop

(The diagram above incorrectly shows optional "Forwarded" and "Will retry"

notification emails as FLUX STAT Envelopes. This is a mistake.)

Status Envelopes generated far away from Endpoint A may also fail to be reported

to Endpoint A in due, then potentially causing contradicting emails to be sent to

business contacts, like a Warning email and a spurious Timeout Error email in the

successful Message Envelope processing scenario illustrated below:

28

Business

Message
T

im
e

o
u

t

Sender

Application

FLUX REQ/RSP

FLUX Node

Send

Loop

Send

Loop

FLUX Node

FLUX REQ/RSP

FLUX STAT: OK

ERROR

FLUX STAT: OK

ERROR

FLUX REQ/RSP

FLUX STAT: OK

Warn. Email

Warn. Email

Send

Loop

Send

Loop

Error T.Out Email

Note that only the Node which is directly connected to the Message Envelope

originator Endpoint shall send a Timeout Error email.

Other complications can also arise from inconsistencies in FLUX system

configurations. Every FLUX Transport system (Endpoint or Node) will have:

(a) a SSL Key Store and local FLUX system Address, configured by the local

FLUX system administrator to store the local node identity. Information in

the SSL Key Store will expire eventually, causing the system to stop

working until the system administrator has taken action.

(b) An SSL Trust Store, Key Store and Client Certificate White-List,

configured by the local FLUX system administrator and identifying all

trusted remote FLUX systems. When a trusted remote system has objects

in its Key Store renewed, this change must be reflected in all trusting

remote systems. Until the system administrators on these trusting remote

systems have taken action, routes to this system will no longer work.

(c) A Routing Table, configured by the local FLUX system administrator and

mapping remote FLUX systems URL(s) to those combinations of FLUX

Domain Addresses the remote system "talks to" and Dataflow names it

"knows about". Common Dataflow names must be agreed upon and routes

configured correctly in all FLUX systems traversed by the Envelopes

using that Dataflow name, and all targeted destinations must be reachable

using non-looping routes inside the network. Besides, a return route must

be defined as well so that Status Envelopes can flow back. System

administrators on all traversed systems must write a correct Routing Table

meeting those requirements. When a new Dataflow name is introduced, all

29

concerned system administrators must update the Routing Table correctly.

Also, FLUX system URLs can change as a result of new hosting

agreements. More exceptionally, changes in the chain of delegated powers

and responsibilities in a country or organisation can lead to the creation or

retiring of Nodes and Endpoints in the network. Any error in the Routing

Table will cause some Envelopes to fail reach their destination and bounce

back to their originator with an error, until that error is manually corrected

in the configuration.

Of course, a system with a configuration can be seen even on very short routes. But

the probability of a bad system configuration affecting a transmission gets higher as

the route becomes longer.

30

6. DETAILED PROTOCOL DESCRIPTION

6.1. Hierarchical Addressing

FLUX Transport supports the idea of hierarchical addressing where all FLUX

systems (Nodes and Endpoints) are related together through parent-child

relationships. In this model, Parents may have many Children, but any Child only

has one single Parent.

A (Child) FLUX Party who runs a FLUX system needs to register it to a Parent

FLUX Party also running a FLUX system. Typically, it will ask the Parent FLUX

Party on which it somehow depends or from which it got a mandate to run a FLUX

system. The child FLUX Party will receive its FLUX address from its Parent FLUX

Party as a FLUX sub-Domain address of the Parent's FLUX Domain address. Then,

the Parent and Child parties will setup a secure communication channel between

them and exchange token routes so that FLUX Envelopes can flow between them.

By doing so, the FLUX system in the Child FLUX Party become integral part of the

FLUX Domain of its parent. A FLUX Party may be the parent of many Child

FLUX Parties, all of which will run a FLUX system using a sub-Domain address of

the Parent's FLUX Domain address.

Then, the same process can repeat. Any Child FLUX Party may itself become the

parent of further FLUX Parties, provided their own parent allows them to do that.

All these related FLUX Parties form an interconnected network of FLUX systems

through which FLUX Envelopes can flow freely (assuming configuration of the

systems in the FLUX network is correct). Their top-most Parent FLUX Party (the

root of their FLUX network) is referred to as the Domain Façade Node of that

FLUX network and its FLUX address is said to be the FLUX network Domain

address. It acts as the single-entry point or "Central Node" through which FLUX

systems outside of the Domain can reach the systems inside the Domain.

It is suggested that every country runs a National FLUX Domain by setting up such

a National Domain Façade Node, a system or a cluster of systems running a FLUX

Transport "Central Node" using the country's ISO Alpha-3 code as its FLUX

Domain address. International Organisations are suggested to do the same using the

code published by the International Organization for Standardization (ISO 3166-1).

DG MARE may decide to further extend this list by assigning additional values. The

current extended list will always be available on the European Commission DG

MARE Master Data Register

(http://ec.europa.eu/fisheries/cfp/control/codes/index_en.htm).

Several FLUX Domains may grow independently in such a way, each one rooted at

its own Domain Façade Node. At some point, it becomes desirable for members of

http://ec.europa.eu/fisheries/cfp/control/codes/index_en.htm

31

different Domains to be able to exchange FLUX Envelopes. To do this, Domain

Façade Nodes having distinct (non-overlapping) Domain addresses can simply set-

up routes between them. Then, they all become one single big FLUX network where

all Nodes are interconnected no matter which Domain they belong to.

Connecting many FLUX Domains together in this way still involves setting up

many one-to-one routes between the various Domain Façade "Central" Nodes. One

solution would be to artificially promote one of these Domains Façade Nodes to

become a central point for everything. A better solution still is to create a new

Central Node whose mission is to maintain a route to many Domain Façade

"Central" Nodes, effectively creating a star-shaped network. This is exactly the

solution proposed by the European Central Node, a cross-Domain Façade Node to

which all Member States' Domain Façade Nodes register directly.

According to the principle explained above, Envelopes travelling between FLUX

Parties located in different Domains will cross many intermediary systems.

Notes:

– FLUX Transport protocol supports the idea of Shortcut Routes, routes

linking non-adjacent FLUX systems in the network. Shortcut Routes helps

speed up the traffic travelling across huge networks. Used appropriately,

Shortcut Routes can also free some FLUX systems in the network from

handling themselves the traffic to some or all their child Nodes/Endpoints.

If at the same time these child systems also have their Default Route (as

explained in the see next chapter) pointing to the system having a Shortcut

Route for them, then their parent Node no longer plays any role and can be

removed. This technique can be used to retire intermediary Nodes on a

running network.

32

– When established between two Endpoints, a Shortcut Route is referred to

as a Direct Route. Direct Routes are useful because they are faster and

allow end-to-end security, but they are not scalable. Also, they are more

difficult to configure and to maintain, because distant system

administrators periodically need to exchange their SSL configuration

parameters.

6.2. Routing Algorithm

FLUX is a computer-based transmission protocols, and as such it uses addresses to

identify both the original Envelope sender and the intended final Envelope receiver

of any FLUX Envelope. Because FLUX messages are exchanged using Web

Services over the Internet, each FLUX system will have a Web Service address on

the Internet, an HTTPS URL using standard SSL security. Moreover, a FLUX

system will also have a list of Internet Email addresses to contact in case of system

failure.

Because FLUX Transport protocol allows forwarding through intermediary systems,

FLUX systems need only to know the other FLUX systems to which they are

directly connected, typically only their parent Node and their own child Nodes or

Endpoints. They need not be able to establish an HTTPS connection to any other

Node or Endpoint, which allows for simple SSL and routing setups while still

allowing the network to grow without restrictions.

By examining the Envelope they receive, FLUX systems can determine whether the

Envelope is intended for them and should be processed locally, or if it should be

forwarded to another FLUX system as determined by the routing algorithm.

Different Envelope types are routed differently:

 Routing of Status Envelopes will always be performed solely based on its

destination address, because this address is always a Fully Qualified FLUX

Address. As long as a system running with the specified address exists in the

same network, and assuming all Nodes along the way are configured correctly,

then the Envelope should always be able to reach it.

 Message Envelopes provide for destination address abstraction, where a partially

unqualified destination address (often only a country code) is complemented with

a Dataflow name to help Nodes find out where it must be sent. This allows the

Envelope sender to ignore the exact address of the Node who has received

authority to process the targeted business message type (Dataflow) in the targeted

country, and to simply refer to the country and the commonly agreed Dataflow

name matching the business message type. As long as a system is processing this

Dataflow in the destination Domain in the same network, and assuming all Nodes

along the way are configured correctly, then the Envelope should always be able

to reach it. Intermediary systems on the route towards this destination are

collectively supposed to know how to reach the correct destination.

All FLUX systems have a Routing Table listing all remote FLUX systems that are

directly connected to them, each one defining one possible route from the system to

33

other parts of the network and referring to them using their URL(s). Routes fall into

two categories:

(a) A Standard Route is associated with a list of combinations of FLUX

Dataflow names and FLUX Domains or Addresses, thereby defining

which Envelopes should be forwarded to that route. Typically, a Node will

have a Standard Route to each of its affiliated child Node or Endpoint

(those other FLUX systems that have registered to this FLUX system).

Shortcut routes are Standard Routes, also.

(b) A Default Route is where Envelopes not matching any Standard Route

shall be sent. The Default Route typically points to the parent Node (the

Node to which it has itself registered). All systems shall have a Default

Route, except the system located at the root of the network tree (isolated

Domain Façade nodes and Nodes interconnecting top-level Domain

Façade Nodes).

The routing Table must be manually populated by the FLUX administrator in such a

way that, by decreasing order of precedence:

– Envelopes destined for a directly connected system (either a child Endpoint or

any remote system for which a Standard or Direct Route exists) are sent to that

system directly;

– Shortcut Routes are used when pointing to a system which lies in the route

towards an Envelope final destination;

– Envelopes destined for a child Endpoint in a child Domain are dispatched to the

right child Domain Node through which the final destination child Endpoint can

be reached;

– all Envelopes destined for unknown parts of the network are dispatched to the

Default Route.

The routing algorithm must select one possible next-hop remote system on a

converging route towards the final FLUX destination system for that Envelope. If

possible, it shall try to select the best possible route, the route with the highest

degree of precedence that most closely matches the Envelope type and destination

as explained above.

Notes:

– All Dataflows will not be in use in all FLUX Domains (countries or

organisations). Posting a Message Envelope to a FLUX Domain where it is

not used will cause the Message Envelope routing to fail and result in a

Status Envelope bouncing back indicating an Unknown Destination error,

assuming a return route exists for that Status Envelope.

– In order to keep the Routing Table short, implementations can allow

wildcard values in FLUX Domain addresses and/or Dataflow names in the

Routing Table. Additionally, implementations can come with their own

wildcard matching rules, e.g. to require exact FLUX Address match vs.

allow a mere FLUX Domain match. Furthermore, implementations can

34

allow partially overlapping rules, such as a mixture of routes defined with

and without wildcards for FLUX Addresses in the same FLUX Domain

and identical Dataflow. The implementation shall define which rule gets

priority in such cases. These details are implementation-specific and

therefore outside the scope of this document.

– Implementations may allow multiple URLs to be associated with any

remote FLUX system, to be used as a cascade and/or a cluster so as to

increase global service availability, performance or both. This is an

implementation detail not discussed in this document.

In the absence of Shortcut Routes to their child Nodes/Endpoints, FLUX Nodes

must have a route to every child Node/Endpoint that has registered with them.

Additionally, all FLUX systems must have at least one Default Route pointing to

their parent Node.

 Typically, Endpoints will not have any other route, so everything that cannot be

processed locally will go to through the Default Route.

 Nodes will forward to this Default Route any Envelope not matching any other

route in their routing table. Unless other routes are defined on the Node, it will

send to the Default Route all Envelopes not destined for any of their child Node

sub-Domains or child Endpoint address, i.e. Envelopes whose destination address

is not inside the local Node Domain, in other words Envelopes whose destination

address does not start with the local Node address.

The above routes mimic the network topology (i.e. its hierarchical organisation of

Nodes and Endpoints). Nodes and Endpoints may also have extra routes not

deriving from this topology, e.g. routes to other Domains or direct routes to direct

selected Endpoints. But their use will generally be limited:

 When defined on a Node, these routes will only be used by Envelopes originating

from inside the Node's own Domain, so it will work best on Domain Façade

Nodes.

 When defined on an Endpoint, such additional routes will only benefit Envelopes

originating from the Endpoint itself, such as Message Envelopes posted from its

business layers.

Because several routes may exist one referring to a sub-Domain of another and/or

with a Dataflow pattern also matching the pattern of another, more than one route

will generally match a given Envelope. A system routes an Envelope by choosing

the most appropriate route, the one that most closely matches the Envelope

destination. If both the Domain address and the Dataflow pattern only match

partially, then priority has to be given to the route which has the closest Domain

address match.

Care must be taken to avoid loops in the network, as the FLUX Transport protocol

currently does not provide any standard means of detecting them. Because of the

way Transport-level Retries are working, it is not possible to simply remember

about previously seen Envelope and drop or reject duplicates. One strategy could be

to:

35

 Split all routes into 3 categories, those pointing to a child Node or Endpoint

located inside the local system Domain address, those pointing to Nodes in the

same top-level (National) Domain and the other ones located elsewhere (e.g. in

other countries).

 On all Nodes except those interconnecting top-level Domain Façade Nodes,

refuse to forward to Nodes outside the local Domain address any Envelope that

doesn't originate from within the local Domain.

The FLUX Transport protocol foresees that FLUX system implementations may

optionally contain logic to detect and report loops in the following fashion:

 When a Node forwards an Envelope, it may remember the name of the next-hop

remote FLUX system it forwards it to.

 Then, if the Node later receives the same Envelope back from the same remote

FLUX system, it may respond with a special non-permanent/non-final status

code indicating that a loop is detected. This tells the remote FLUX system that

this route is a dead end and gives it an opportunity to try a next possible route

towards the final Envelope destination should it know more than one. If the

remote FLUX system does not implement any logic to handle this special status

code, it can just retry the transmission back to the same Node once again,

 If the Node receives yet another copy of the same Envelope still coming from the

same remote FLUX system, it must break the loop by responding with a

permanent/final status code indicating that the Envelope has been received too

many times.

Note:

– FLUX Transport protocol requires the FLUX Envelope be forwarded

without modification. This makes it impossible to put inside the FLUX

Envelope such things as a hop counter or routing breadcrumbs (the list of

addresses of all Node previously traversed by the Envelope). However, a

future revision of the FLUX Transport protocol may describe means of

adding these values inside the SOAP Envelope Header. If done cleverly,

this updated FLUX Transport protocol could be forward and backward

compatible with the current version, keeping the FLUX Envelope XML

namespace identical.

36

6.3. SOAP Standard

FLUX systems communicate using Web Services compliant with WS-I Basic

Profile 1.1 (http://www.ws-i.org/profiles/basicprofile-1.1-2004-08-24.html). The

advantage of using such old version is simplicity. However, its HTTP Binding is

known to be flawed when working over the Internet, as it assumes all HTTP Proxies

along the way are SOAP-aware (which is rarely the case). In order to solve these

problems, FLUX will sometimes depart from WS-I Basic Profile 1.1 and follow

some recommendations from SOAP 1.2 as described below.

All FLUX operations are Two-Way, meaning every FLUX request is followed by

one response. The normal FLUX response is always a FLUX Acknowledge

message.

Only in those cases when the server is unable to produce a proper FLUX response, a

SOAP Fault may be returned instead. In fact, any HTTP payload can be returned as

long as the HTTP Status code is not 200.

6.4. FLUX Request

FLUX Transport v1 XSD defines a set of XML attributes to be used in FLUX

Transport v1 Envelopes. The rule of thumb is that every Message or Status

Envelope should contain all information needed so that it can be fully processed by

the receiving FLUX system even if it has never seen or does not remember of any

previous Envelope belonging to the same "conversation".

When looking at the communication that happens between two directly connected

FLUX systems (Nodes and/or Endpoints), the FLUX Web Service request is always

made of an UTF-8 XML payload containing a SOAP 1.1 Envelope wrapping a

FLUX Envelope, an ENV element of XML Namespace "urn:xeu:flux-transport:v1",

posted using a SOAPAction of "urn:xeu:flux-transport:wsdl:v1:post". The ENV

element contains the following attributes:

– DT: UTC Creation Date and time of this Envelope. Set by the Envleope

originator Endpoint. When encapsulating a synchonous ACK element

received through HTTP(S), DT must be set to the HTTP response header

Date value.

– TS: Test flag. Defaults to False. Must be set to true on Envelopes

exchanged by test/acceptance systems. Production systems must reject

Envelopes where TS is set to true. Protects production systems from ever

processing non-production data.

http://www.ws-i.org/profiles/basicprofile-1.1-2004-08-24.html

37

It also contains exactly one MSG or a STAT element, depending on the Envelope

type:

 Message Envelopes have an MSG element, itself further containing exactly one

business data XML element of any explicit XML namespace other than FLUX

Transport. Nodes shall never validate the business data element. Endpoint may

only validate it asynchronously. All businesses using a Request-Response

Messaging Pattern must have provisions in the business message itself for

correlating their Business Responses and Business Requests, e.g. by embedding a

GUID somewhere inside the business payload. The MSG element also has the

following attributes:

– FR, ON: the Fully Qualified FLUX address of its originator Endpoint and a

unique Operation Number generated by that system. This vector uniquely

identifies the Message Envelope. Mandatory.

– AD, DF: a destination FLUX Domain or node address and a Dataflow

name. This vector shall be used to compute the final destination for the

Message Envelope. Mandatory.

– TODT: the Message Timeout, an XSD DateTime with Time Zone (UTC or

not), the limit past which the business message is considered to be expired.

Mandatory.

– AR: a Boolean (true/false token flag) determining if an Acknowledge-of-

Receipt is expected by the originator Endpoint or not. Mandatory.

– CT: space-separated list of business contact people email addresses to be

informed by email should the need arise. Optional.

– VB: verbosity level telling which type of events need to be reported by

email, either NONE, ERROR (only report those permanent transmission

failures that systems are not able to report in time), WARN (also report all

permanent transmission failures), INFO (also transmission retry attempts)

or DEBUG (report everything). Defaults to ERROR.

– TO: the synchronous timeout value in seconds, how long a Web Service

call transmitting this Envelope can last before considering it failed. Any

positive integer value number in the range 1 to 600. Values below 30

should better be avoided. A Message Envelope is considered expired at

TODT-TO. Defaults to 60.

 Status Envelopes have a STAT element, itself further containing exactly one

synchronous Acknowledge element (ACK) and zero or one TEXT element to

contain any detailed text description of an error should that be useful. The STAT

element also has the following attributes:

– FR: the Fully Qualified FLUX address of the system which has crafted the

Status Envelope. Mandatory.

– AD, ON: the Fully Qualified FLUX address of its destination Endpoint

copied from MSG@FR and the unique Operation Number copied from

38

MSG@ON. This vector uniquely identifies the Status Envelope and

correlates it with the corresponding Message Envelope. Mandatory.

– DF, AR, TODT, TO, CT, VB: all these values are copied from the

correlated Message Envelope. This way, any Node receiving the Status

Envelope has the complete information to fully process it even if it has

never seen the correlated Message Envelope.

Basic data Types are as follows:

– FLUX Addresses (FR, AD) are case-insensitive tokens made of Domain

names separated by colon characters (:). Domain names can contain letters

A to Z, numbers 0 to 9, dashes (-) and underscores (_). Maximum length is

64 characters.

– FLUX Dataflows (DF) are case-insensitive tokens of type URI, meaning

they can either start with "urn:" or look like a URL. Maximum length is

256 characters.

– FLUX Operation Number (ON) is a 20-character alphanumeric case-

insensitive token that must be chosen so that:

(a) every system or software component generating Message

Envelopes posted to the same FLUX Endpoint always use new

fresh ON value for every new Message Envelope. Typically,

ON must contain a system or software unique identifier, a year,

year/month or year/month/day (without the "/" characters) and

a message sequence.

(b) It contains as many random characters as possible. (The reason

for this is explained in the chapter on Security.)

– Date/Times (DT, TODT) are XSD DateTime with Time Zone (UTC or

not).

Generally, the FLUX Transport layer in a FLUX system is expected to relay the

Envelopes it receives as efficiently as possible, either to a remote system or to local

business layers. It is not expected to understand the content of the transported

business payload. Therefore, a FLUX Transport systems shall avoid doing any kind

of document-wide XML manipulation on FLUX Envelopes. They shall only extract

and validate the individual ENV, MSG, STAT, ACK and TEXT element attrivutes

as needed for implementing the FLUX Transport operations. A FLUX Node must

certainly not make any attempt at XML-validating the incoming Envelopes. It

should also as much as possible avoid serializing/deserialzing, cannonicalizing or

otherwise altering the XML representation of incoming Envelopes. Instead it should

treat Envelopes as much as possible as byte streams.

6.5. FLUX Synchronous Response

When looking at the communication that happens between two directly connected

FLUX systems (Nodes and/or Endpoints), the FLUX Web Service response is an

39

UTF-8 XML payload containing a SOAP 1.1 Envelope wrapping a FLUX

Acknowledgement message, an ACK element of XML Namespace "urn:xeu:flux-

transport:wsdl:v1", returned with HTTP result status code 200 and a SOAPAction

of "urn:xeu:flux-transport:wsdl:v1:post". The ACK element contains the following

attributes:

– FR: the Fully Qualified FLUX Address of the receiving system. Optional.

– RS: FLUX Transport Return Status code, a 3-digit integer value indicating

a permanent/final or non-permanent/non-final status for the FLUX

operation, either

(a) non-permanent/non-final: 1xx (Ongoing, currently unused),

202 (Accepted), 500-598 (Temporary Server Error)

(b) permanent/final: 201 (Acknowledge-of-Receipt), 4xx (Client

Error), 599 (Message Timeout)

– RE: a free text field to explain the reason for the RS value. When accepting

an Envelope, it is recommended that RE contains a unique random string

that can be used by the Envelope sender system as a proof that it has been

received by the receiver. Mandatory in case of error.

– RDYDT: a System Ready date/time, i.e. system-down-until date/time, the

point in time past which the server is expected to become available again.

If returned by a destination in its synchronous or asynchronous response,

then no further Envelopes should be sent to that destination before this

date/time. When a Node receives an HTTP 5xx response containing a

Retry-After value in its HTTP header which greater than the request

Envelope MSG@TODT, it must immediately post a Status (STAT)

Envelope back to the MSG originator with ACK@RS set to 599 and

ACK@RDYDT set to the Retry-After value. Optional.

Basic data Types are as follows:

– FLUX Address (FR) is as described in the previous chapter.

– Date/Times (RDYDT) is an XSD DateTime with Time Zone (UTC or not).

– FLUX Transport Return Status is among:

201: Acknowledge-of-Receipt (receiver is the final destination)

202: Accepted (receiver is not or doesn't know if it is the final dest.)

400: Bad Request (generic permanent error)

401: Unauthorized, Client Authentication Required

403: Forbidden, Authorization Required

404: Unknown Dataflow

405: Unknown Destination

406: Bad Envelope (request XML document is malformed)

410: Gone (requested service or FLUX version is no longer available)

412: Unknown Return Route (asynchronous messaging is impossible)

413: Request Entity Too Large (request has too many bytes)

40

429: Too Many Requests, Possible Loop (status code 508 sent too

many times)

500: Internal Server Error (generic temporary error)

501: Not Implemented (requested service not supported)

503: Service Unavailable (service temporarily unavailable)

505: FLUX Transport Version Not Supported

507: Insufficient Storage (memory, database or filesystem full)

508: Loop Detected (same Envelope coming back from where it was

previously forwarded to)

599: Request Timeout Error (FLUX Message Timeout elapsed)

Notes:

– As prescribed in WS-I Basic Profile 1.2, SOAP Faults shall only be used as

a last resort and only for reporting server errors. The reason is that, it is

possible that an HTTP Internet Proxy somewhere between the client and

the server will see the HTTP Status 500 and then replace the SOAP

payload by some generic HTML error message so as to make sure the

server doesn't leak out any sensitive information in that payload such as

stack traces, filesystem paths, database passwords, etc. The only way to

have FLUX behave correctly in such cases is by making sure an HTTP 500

response always means the error is a server error, irrespective of whether

the payload is a SOAP Fault or not.

– Whenever the HTTP Status Code is not 200 and whenever the HTTP

payload is not a SOAP Fault, then pure HTTP Status Code conventions

apply instead, meaning that:

 HTTP Status code between 400 and 499 always indicates a client

error (meaning the request must not be retried as is);

 HTTP Status code between 500 and 599 always indicates a server

error (meaning the same request can be retried later) unless the

payload is a SOAP Fault.

– Once a FLUX Acknowledgement message contains a permanent/final RS

value, this result status code can never change after that point. The RE

value however can change, such as for example to report that the response

is a copy of a previous response issued for a Message Envelope duplicate.

– A FLUX Acknowledgement message never contains any business

response. Doing this way ensures a clear separation between transport and

business layers. Should the need for synchronous fast/lightweight business

request/response mechanism arise in the future, this choice can be

reconsidered in a later version of FLUX, e.g. by introducing new kinds of

FLUX Envelopes.

41

6.6. FLUX Asynchronous Response

FLUX Acknowledge messages can be sent synchronously as is synchronously, or

they can be encapsulated into a Status Envelope and propagated through the FLUX

network asynchronously using a FLUX Web Service request posting a STAT

Envelope (see chapter on FLUX Request). Permanent/final FLUX

Acknowledgement messages received synchronously will be encapsulated and

propagate in this way, as explained in chapter on Token-based Operation.

Notes:

– Once a Status Envelope contains an Acknowledgement message whose RS

value is permanent/final, all subsequent Status Envelopes correlated to the

same Message Envelope (having identical STAT@AD and STAT@ON)

must all contain the same RS value. The RE value however can change,

such as for example to report that the response is a copy of a previous

response issued for a Message Envelope duplicate.

– A Status Envelope never contains any business response. Doing this way

ensures a clear separation between transport and business layers. Should

the need for synchronous fast/lightweight business request/response

mechanism arise in the future, this choice can be reconsidered in a later

version of FLUX, e.g. by introducing new kinds of FLUX Envelopes.

In FLUX Transport v1, the business layers always run asynchronously to the FLUX

transport layers. Once a Message Envelope got a FLUX 201 (AoR) response, it

means it has reached the business layers at its destination. These business layers

then process the business message at their own pace and decide whether or not a

business response has to be sent back. If so, it will be sent using a new Message

Envelope containing the business response. This new Message Envelope will have a

new unique Operation Number (MSG@ON) value, so it will have its own FLUX

transmission status reported back to the responding business. The business requests

and response must provide some unique identifier to allow the business layers to

correlate them. This is outside the scope of FLUX Transport.

6.7. Summary of Envelope Attributes

Attribute values in business request Message Envelopes are supplied by the

originator (requesting) business. Those in business response Message Envelope are

generally supplied by the originator (responding) business, but some special rules

apply for some attributes. Except for reversed FR/AD attribute values, all attributes

in a Message (request or response) Envelope carry over to their corresponding

Status Envelope. The following table shows which values to use during a typical

business request/response round-trip from A to B:

42

Attribute

in a business

request

Message

Envelope (1)

in a business

request

Status

Envelope (2)

in a business

response

Message

Envelope (3)

in a business

response

Status

Envelope (4)

FLUX DT

(Envelope

Timestamp)

set by

originator A

set by STAT

originator

(STAT@FR)

set by

originator B

set by STAT

originator

(STAT@FR)

FLUX TS

(Test Flag)

optionally set

by originator

A

copied from

(1) if present

copied from

(1) if present

copied from

(3) if present

MSG/STAT

FR (From)

Set by

originator A

set by STAT

originator
Set by B

set by STAT

originator

MSG/STAT

AD

(Destination)

B, set by

originator A

copied from

FR in (1)

usually copied

from FR in (1)

copied from

FR in (3)

MSG/STAT

DF

(Dataflow)

set by

originator A,

usually the

XML

Namespace of

the business

payload

copied from

(1)

set by

originator B,

usually same

as in (1)

copied from

(3)

MSG/STAT

ON

(Dataflow)

set by

originator A

copied from

(1)

set by

originator B,

different from

(1)

copied from

(3)

MSG/STAT

AR (Ack of

Receipt)

set by

originator A

copied from

(1)

set by

originator B

copied from

(3)

MSG/STAT

TODT

(Envelope

Timeout)

set by

originator A

copied from

(1)

set by

originator B

copied from

(3)

MSG/STAT

TO (Sync.

Timeout)

optionally set

by originator

A

copied from

(1) if present

optionally set

by originator

B

copied from

(3) if present

MSG/STAT

CT (Business

Contacts)

optionally set

by originator

A

copied from

(1) if present

appended to

by originator

B, or copied

from (1)

copied from

(3)

MSG/STAT

VB

(Verbosity)

optionally set

by originator

A

copied from

(1) if present

optionally set

by originator

B

copied from

(3) if present

6.8. FLUX Timeouts

Care must be taken to avoid race conditions resulting from the implementation of

the TODT timeout. Provisions differ depending on the Envelope type:

43

 Web Service call (a forwarding operation) on a Message Envelope may only last

for at most TO seconds. This includes time to establish the connection, to send

the request and to read the response.

 Although FLUX Transport protocol has provisions for removing Envelope

duplicates, concurrently running callout operations on the same Message

Envelope must be avoided. This is because random system or network problems

could cause some of these concurrent callouts to fail while some other might

succeed. If approaching timeout time, the Message Envelope would then end up

having more than one permanent/final status, which is prohibited. Therefore,

consecutive Web Service calls (forwarding operations) operating on a given

Message Envelope must be separated by at least TO seconds.

 Web Service calls (forwarding operations) operating on a Message Envelope

cannot be initiated after TODT-TO. If at TODT-TO the Message Envelope is still

found in the transmit queue of a FLUX system and if it is not currently being

transmitted, it must give it up. The Message Envelope is removed immediately

from the transmit queue and replaced by a FLUX 599 Status Envelope destined

for the Message Envelope originator.

 If a Web Service call (a forwarding operation) of a Message Envelope is still on-

going in a Node at TODT, it must be interrupted immediately, even if some

partial response content had already been received from the remote system at that

time. The reason is, SOAP operation involving ill-behaving systems could take a

very long time to complete (up to several hours if TCP Keep-Alive is used on the

underlying connection). Businesses using FLUX Transport systems cannot

generally afford waiting all that time.

 It is recommended that the TO value is always set big enough so as to leave

enough time to the slowest Node of the network to respond, typically somewhere

between 60 and 300 seconds. Big enough TO values also gives some leeway in

operation timing and allows the FLUX systems in the network to have their clock

drift slightly.

 Forwarding operations of Status Envelopes must go on long after TODT. How

long they must be allowed to go after TODT is a system configuration parameter.

Typical value should be in the range of several days. In order to conserve system

resources, FLUX systems may decide to progressively increase the delay

separating two consecutive callout operations as time goes by.

 Duplication of Status Envelopes due to concurrently running callout operations

on a Node or Endpoint is not an issue, as long as all forwarded Envelopes are

identical. Therefore, the above timing restrictions governing SOAP operations on

Message Envelopes are not needed when forwarding Status Envelopes. In

particular, systems having received only a partial SOAP response TO seconds

after initiating a Status Envelope callout operation may decide to keep on waiting

longer for the full response to arrive before aborting the callout operation. In

doing so, systems must still make sure their memory or network do not deplete.

44

Business

Request
Business

Request

Sender

Application

Receiving

Application

FLUX Node

N

Originator

Endpoint

A

Destination

Endpoint

B

FLUX STAT: AOR

FLUX REQ

FLUX RSP

FLUX REQ

FLUX STAT: AOR

FLUX RSP

FLUX STAT: AOR

Business

Response

FLUX STAT: AOR

 R
e

q
u

e
s
t

T
im

e
o

u
t

 R
e

s
p

o
n

s
e

 T
im

e
o

u
t

DT

TODT

RSPDT

time

Business

Response

TO

TODT-TO

Please note that the Response Timeout RSPDT pictured above is a business feature.

As such, it must be implemented in the business layers. It is not part of FLUX

Transport.

Sending "Timeout Error" emails to the business contacts is the responsibility of the

Node where the Message Envelope originator Endpoint is affiliated. If the AR

boolean flag in the Message Envelope is set to True, then the same Node shall also

be responsible for sending "Timeout Error" emails to the business contacts. (A Node

can always find out whether it is in charge using the client White-List mechanism

explained in the chapter on Security.) This allows proper detection of "black holes"

in the network, which are misbehaving systems that would silently swallow

Envelopes and never send out any Emails. It also helps avoiding Emails being sent

by multiple systems after one single Message Envelope has timed out. Besides,

having business contact people always receive FLUX emails from the same sender

also reduces the risk of anti-spam filters deleting some of them. Last but not least,

affiliates trust the digital certificate of their Node, so these Emails could even be

digitally signed by the Node should it own a certificate that allow this use, and

provided the Node and its affiliates both support this feature.

If the AR boolean flag in the Message Envelope is set to False, then the only Node

that knows about an Message Envelope being aborted is the Node that aborts it. So

in this case, sending "Timeout Error" emails to the business contacts is the

responsibility of the Node that crafts a FLUX 599 Status Envelope. Unfortunately, it

could happen that a Status Envelope with any FLUX Status Code error other than

599 was generate in time but then got stuck somewhere in the nework during its

way back. The only way to guarantee the business will know about it is to have all

Nodes forwarding a Status Envelope other than a FLUX 599 after TODT has

elapsed also send a "Timeout Error" email.

Please note that a "Timeout Error" email does not imply transmission failure. These

emails can also be sent by the FLUX network when it is unable to deliver a Status

45

Envelope in time, or after the transmission of the Status Envelope fails on a

permanent error. In both cases, the Status Envelope which fails to reach its

destination may contain an Acknowledge Of Receipt, or it may notify about a

permanent FLUX error. Either way, the FLUX Status Code will be mentioned in at

least one of the "Timeout Error" emails sent by the network to business contacts.

Besides contacting business contact people, the persons in charge of Nodes can also

be contacted by the network whenever a problem is discovered in a remote FLUX

system. The Email addresses of these people are retrieved from the FLUX Routing

Table.

In all cases emails are sent, mail storms must be avoided. Instead of sending each

error message separately, all new error messages to the same recipients should be

grouped together and be sent together at regular time intervals, e.g. TO seconds.

6.9. FLUX Operation upon receiving any Envelope from a remote system

When a FLUX system receives an Envelope from a remote system whatever its kind

(Message or Status), it must first and foremost work out the client identity and

verify it knows this client. This is typically performed using 2-way SSL negotiation

first (checking if the client certificate is still valid, unrevoked and if it was issued

from a still-trusted Certification Authority), then followed by looking up the

received client certificate in a Client Certificate White List. Requests originating

from untrusted clients can be rejected in two different ways, either:

– an SSL negotiation error, or

– a Result Status 401 (Unauthorized, Client Authentication Required) synchronous

Acknowledge response.

Note that a request coming from an unknown or untrusted client may potentially

contain a computer exploit aimed at compromising the receiving system. Therefore,

it is very important that such requests receive as little processing as possible. In

particular, it is strongly suggested that:

 SSL negotiation is offloaded to a specialized front-end 2-way SSL HTTPS

Reverse Proxy back box, such as Apache2. This box will block requests posted

using an invalid or forged client certificate. It will relay the request to the back-

end FLUX system only if it was posted using a valid and trusted client certificate.

Doing so, it will typically insert a description of the client certificate inside the

relayed request so as to allow white list verification on the real (back-end) FLUX

system, typically by adding a new parameter in the the HTTP header.

 FLUX systems must stop reading the request from the network connection as

soon as they realize the client certificate is not white-listed. Typically, only the

HTTP header should be read prior to client certificate white list checking. As a

side effect, and because the FLUX system is not supposed to extract the

Envelope unique identifier, so it will not remember it either.

Once the client certificate verification is complete, the processing differs depending

on the Envelope type.

46

7. SECURITY

FLUX systems must be able to recognize all other FLUX systems they know. They

must reject any message sent by unknown systems. As explained in the paragraph

on timeouts, they must also be able to differentiate between Endpoint clients that

and upstream Nodes.

All FLUX systems in a network must trust all Nodes of the network for never

propagating in the network any message coming from an unauthorized source.

When the business messages (identified by the combination of Dataflow name and

destination FLUX Address) is so important and/or so secret that the FLUX network

cannot be trusted, it is always possible to set up a direct route connecting the source

and the destination Endpoints directly.

7.1. Non-use of WS Security

FLUX Transport v1 does not use WS-Security. The main reason is that WS-

Security is available in many standard flavours (versions 1.0, 1.1, 2.0, etc) which are

all optional parts of the Web Services standards and as such not all versions are

available in all Web Services implementations. This makes it hard to guarantee

interoperability between systems that are built using WS implementations from

various vendors. Instead, FLUX relies on security mechanisms implemented at the

underlying HTTPS layers.

Another reason for not using WS Security is because complex systems such as Web

Services endpoints tend to be vulnerable to all sorts of exploits that can compromise

them. It is generally considered dangerous to have such systems directly exposed to

the unsafe Internet. Instead, they should only be allowed to run behind a Reverse

Proxy, a specialized gateway system specifically designed for the purpose of

protecting them from unknown client systems. Reverse Proxies typically implement

2-way SSL security which provides for request encryption and signature by the

client system already. This level of security is usually sufficient when operating

over trusted Nodes only. A Direct Route can always be used whenever direct end-

to-end security is required. In all cases, WS Security would be redundant.

7.2. Mutual Authentication based on Digital Certificates

FLUX systems typically expose their Web Service on the Internet using HTTPS.

They must secure them by means of 2-way SSL/TLS and support only crypto-

algorithms deemed strong enough for the purpose of securing business messages

they transport. For example, MD5 hashes and symmetric encryption algorithms

using keys shorter than 128 bits will usually be prohibited. All FLUX systems shall

own at least one X.509 version 3 Digital Certificate for SSL/TLS Client and/or

Server use having a key length long enough and a lifetime short enough to be

considered safe enough for the purpose. As of 2011 these certificates typically have

at least 1024 bit keys or longer and expire after no more than 5 years.

47

Each FLUX system uses a X.509 Server Certificate to run its HTTPS server.

Usually, this certificate is a Client/Server Certificate that the FLUX system also

uses to authenticate itself while issuing a request to other FLUX systems.

Alternatively, a FLUX system may use as many different Client Certificates as

practical for connecting to the FLUX systems listed in its FLUX Routing Table. All

these Certificates must be obtained from Certification Authorities trusted by those

other FLUX systems with which direct HTTPS communications are established:

 Certificates used by a FLUX Endpoint must be trusted by the FLUX Nodes to

which it is affiliated as well as by all the other FLUX Endpoints to which it has a

direct route

 Certificates used by a FLUX Node must be trusted by all its affiliated FLUX

Endpoints as well as all other FLUX systems (usually Nodes) to which it has a

direct route

For obvious security reasons, Certification Authority who doesn't provide adequate

Certificate Revocation mechanisms shall not be trusted. As an example, production

XEU Node accepts only clients having:

 a certificate issued by FIDES Certification Authority (a.k.a. FIDES CA, similar

to FIDES Test CA for acceptance systems);

 a Class-2 or Class-3 certificate issued by a well-established Commercial

Certification Authority who publishes Certificate Revocation Lists v1 or v2.

Notes:

 Care must be taken that the SSL configuration at the server side of a FLUX Node

or Endpoint specifically rejects requests made by non-authenticating (a.k.a.

anonymous) clients. In an Apache2 mod_ssl configuration this behaviour is

obtained by setting "SSLVerifyClient require". Please note also that FIDES CA

support needs also the "SSLVerifyDepth" be at least 3.

 Because of potential security risks using SSLv3.0/TLSv1.0 Session

Renegotiation, the use of this feature should be avoided unless agreed upon by all

FLUX system of the network. Session Renegotiation is a feature of SSL/TLS

whereby a session initially established successfully in some way can be

renegotiated at any time and then done in some other way. A typical use of this

feature is when a server initially does 1-way SSL/TLS negotiation with a client to

accept its request, and then forces the client to give its client certificate only

when it discovers the client wants to access a resource that needs client

authentication. Recent SSL/TLS implementation may contain support for doing

Session Renegotiation in a secure way, but interoperability with older SSL/TLS

implementations is not guaranteed. XEU Nodes do not support SSL/TLS Session

Renegotiation.

 Although HTTP 1.0 shall be supported by FLUX Web Services, the use of HTTP

1.1 is strongly encouraged. SSL/TLS session negotiation is a very

computationally intensive work. Therefore, support for HTTP 1.1 Persistent

Connections is especially important in all busy FLUX systems seeing a lot of

FLUX traffic, to avoid them negotiating one new SSL/TLS session for each

individual FLUX Envelope they send or receive. Because they concentrate

48

FLUX traffic from many other FLUX systems, support for HTTP 1.1 Persistent

Connections is critical in busy Nodes.

7.3. Client Authorization using Client White-List

A Certification Authority usually issues certificates to many parties not involved in

FLUX, and these parties must not be allowed access to FLUX. Therefore, it is not

enough for a FLUX system receiving a FLUX request to only check the validity of

the Client Certificate. In FLUX systems must implement a Client White-Listing

filtering system. It must have a manually-configured list of known Client

Certificates and specify for each one if it belongs to an Endpoint or to a Node. It

must reject all requests originating from a client using a Client Certificate not found

in that list.

It is the responsibility of a FLUX system receiving a FLUX Message Envelope

directly from its originator Endpoint to make sure the Envelope bears the correct

originator FLUX Address. Because the FLUX Envelope will subsequently be

forwarded by systems using their own Client Certificate different from the original

client's certificate (unless using a direct route), this verification can only happen at

the 1
st
 Node along the Envelope route.

FLUX Message Envelopes always contain an originator FLUX Address indicating

which country or International Organisation has issued the business request. When

receiving such a request, a FLUX system (Node or Endpoint) must always reconcile

the Client Certificate and the request so as to make sure the originator FLUX

Address corresponds to the Client Certificate of the Endpoint that was used to post

the request. Typically, this is achieved by associating each Client Certificate in the

Client White-List that belongs to an Endpoint with its authorized originator FLUX

Address. This is typically done manually as part of the configuration of the FLUX

system Routing Table. For extra security, it is suggested that Client Certificates

belonging to Nodes are similarly associated with the list of all the FLUX Addresses

of all of affiliated Endpoints and other Nodes connected to that Node.

Please note that, even in the case of Endpoints, the CO field value in the SSL

certificate’s Subject attribute is not an indication of the country owning the

certificate. The certificate Subject attribute must be remembered as a whole and

associated with FLUX Addresses in the FLUX Client White-List table, preferably

together with the Issuer attribute and Serial.

Sometimes, finer-grained access control is required. For example, some FLUX

system may allow some other FLUX systems to send to them only FLUX Message

Envelopes matching selected Dataflows and reject those of any other Dataflow. This

finer-grained access control may be implemented at the business level, or it can be

implemented in the FLUX layers by associating each entry of the client white-list

with a list of authorized originator FLUX Address and Dataflow pairs. Either way, it

must be clear to the software maker who is responsible for checking it.

When a FLUX client connects to a FLUX server using a wrong Client Certificate

(issued by an unknown Certification Authority or expired, revoked, containing

inadequate properties, etc.) then the SSL/TLS negotiation will usually fail and the

request will never be sent.

49

A client may just happen to have obtained a Client Certificate from one of the

Certification Authorities also used by other FLUX clients, but for a purpose other

than connecting to FLUX. Such a client shall not be trusted. Therefore, even when a

client succeeded the SSL/TLS negotiation, it might be wise to avoid leaking out any

information about the FLUX system to it before the client has been confirmed to be

present in the client white-list.

that unknown user. Assuming the SSL/TLS communications layer could establish a

session and a FLUX request was sent, and assuming the receiving FLUX system

discovers the client is not authorized to send this request, it should normally reject it

by returning a FLUX Acknowledge response using the appropriate FLUX Status

Code of 403. In those cases and for the reason explained above, one might prefer the

FLUX system responds with an HTTP 403 or HTTP 404 and empty HTTP payload.

When accessing an XEU Node using an expired or revoked Client Certificate or

using a valid Client Certificate obtained from a well-known commercial

Certification Authority not used by any registered FLUX client at XEU Node, the

SSL/TLS negotiation will succeed but then an HTTP 503 response will be issued

with an HTML payload explaining what is wrong with the certificate. Reverse

Proxies used by other FLUX systems may behave similarly.

Note:

– When using an Apache2 as HTTPS Reverse Proxy front-end, information

on the client certificate can be passed to the back-end server by using

mod_header's RequestHeader directive, such as:

RequestHeader set Client-Cert "%{SSL_CLIENT_M_SERIAL}s,

%{SSL_CLIENT_S_DN}s, %{SSL_CLIENT_V_START}s,

%{SSL_CLIENT_V_END}s, %{SSL_CLIENT_I_DN}s"

7.4. Security concerns with Status Envelopes

Message Envelopes shall only be accepted if they are received from those well

identified remote systems which have been specifically trusted to relay the

embedded business request as identified by the combination of MSG@FR and

MSG@DF values.

In contrast, Status Envelopes shall be accepted as soon as they originate from a

trusted client, no matter the STAT@FR, STAT@DF values. This is because, a badly

configured Node in the network may cause a Message Envelope to go a wrong way.

In such case, the Message Envelope is expected to fail at a later step of its routing,

resulting in a Status Envelope originating from a part of the network where it doesn't

belong. In order for the problem to be detected and corrected, it is essential that

these Status Envelopes are allowed to reach their destination, no matter their

unexpected origin.

An unfortunate consequence of this is, it is easy for anyone getting control of any

Node or Endpoint in the network to attack any other Node or Endpoint by sending it

random Status Envelopes. To avoid this, it is recommended to have as many of the

unallocated characters in the ON value to be randomized. The originator Endpoint

50

of any Message Envelope will remember the ON values it generates, and it will

simply discard any received Status Envelope having an unknown ON value.

7.5. Security concerns when chaining multiple Nodes

The consequence of not using WS-Security is that the identity of a client connecting

to a Node or Endpoint can only be verified by that Node or Endpoint to which it

directly connects, at the time this connection occurs. No other Node or Endpoint can

do this verification. In the scenario involving one single Node, Envelope originator

and destination Endpoints are both affiliated to the Node, so they trust it. However,

if several Nodes are chained, Endpoints are only affiliated to their own Node and

they may not know the other Node in the chain. Still they have to trust them all.

That is, they must trust their Node for only establishing routes to trustworthy Nodes.

In other words, should the Envelope received by a Node N1 from a client Endpoint

A need to be forwarded to another Node N2, that other Node N2 can only

authenticate Node N1. N2 has no way of checking the identity of A from which the

Envelope originates. Instead, N2 must trust that this check has been performed by

N1. Should N2 doubt of the capacity of N1 to verify the identity of its clients, the

only option is for N2 to deny anything coming from N1, preventing any clients

connected to N1 to communicate with (send to and receive from) FLUX systems

connected to N2 directly or to further Nodes connected to N2. By extension, the

same limitation applies to all Nodes on the way from the Envelope origin to its

destination.

A possible solution to this problem would be implementing Web Services Security

(WS-Security) technology. The caveat is that it would require all Endpoints and

Nodes to implement more advanced Web Services standards which would raise the

cost for everyone as well as increase the risk of potential interoperability problems

should some Nodes or Endpoints fail to implement the technology correctly.

Besides, WS-Security will likely not replace 2-way SSL completely as no one wants

to expose complex (hence, bug-prone) Web Services software directly on the

Internet where any attacker could connect to it and try to compromise it.

Furthermore, using WS-Security means that all Nodes and Endpoints will have to

know the client certificate of all other Endpoints, no matter which Nodes they are

connected to. Here, unlike the situation with configuring routes, the amount of

configuration will grow exponentially with the combined communities' size, and all

Endpoints will have to be configured, not only Nodes. This would be highly

unpractical and error prone, unless a central identity management facility is also

implemented. But that would substantially add to the complication of implementing

FLUX. Another argument against using WS-Security is that it is generally much

less efficient than Transport Layer Security. SSL/TLS is ubiquitous these days.

Efficiency and security offered by dedicated SSL/TLS hardware boxes (a.k.a.

gateways or Reverse Proxies) is hard to beat.

Another solution that might be proposed for a future version of FLUX would be

adding a new data field in the FLUX Envelope or in the SOAP Header containing a

digital signature of the payload performed by the original Envelope originator. This

method would make it possible to check the originator identity on those Endpoints

51

where it is worth the trouble (they only need a copy of the originator's certificate

and do the math), depending on how important or is the message in the Envelope

and how far they trust the FLUX network. Endpoints which don't need it would

simply ignore that signature. Because the destination Endpoint can always check

the signature if it wants to, Nodes need only to propagate it without checking. If

done correctly, this feature can be added to the FLUX without breaking

compatibility with FLUX Transport v1 Nodes and Endpoints..

52

8. FLUX PROTOCOL OPERATION

8.1. FLUX Operation upon receiving a Message Envelope

8.1.1. Receiving a Message Envelope from a remote system

Assuming the received Message Envelope passed client authentication checks, the

FLUX system must make sure it doesn't already know a permanent/final status for

this Envelope in its Message Envelope status store. So, it looks up this store using

the MSG@FR and MSG@ON values (the unique Message Envelope identifier). If it

finds a permanent/final stored status, it must send this same status as the

synchronous Acknowledge response and processing shall stop there. ACK@RS

must be the same value as retrieved from the status store. ACK@RE may be

different, e.g. to indicate that the Message Envelope is a duplicate. Envelope

duplicates are not processed any further.

A FLUX system receiving a Message Envelope which passed the above filter must

make sure enough time is available to process it. The system does that by comparing

the Message Envelope business-supplied timeout timestamp MSG@TODT against

the current system time. If MSG@TODT-MSG@TO lies in the past, then the

Envelope must be refused by issuing a Result Status 599 (Business Timeout)

synchronous Acknowledge response. If the Envelope does not specify a MSG@TO

value, the system default synchronous timeout configuration parameter value must

be used instead. The FLUX system needs not remember this status in the Message

Envelope status store, because the same check can always be performed later and

will always give consistent results.

If implementing the optional loop detection algorithm described at the end of the

chapter on the Routing Algorithm, the FLUX system must remember the identity of

the client which has submitted the Envelope. Ideally, the client system Fully

Qualified FLUX address should be derived from the client certificate. Then, the

system must look up the Message Envelope loop-detection store to see if this same

Message Envelope identified with MSG@FR and MSG@ON values has already

been received from the same client. If not, it will store the client identifier,

MSG@FR and MSG@ON values in the Message Envelope loop-detection store

with a counter value of 0. If so, it will increase the stored counter value. Then,

depending on the stored counter value:

– If 0: no loop detected, the system continues Envelope processing as described

below.

– If 1: 1
st
 iteration of a loop in the Envelope route, the Envelope must be refused by

issuing a non-permanent/non-final Result Status 508 (Loop Detected)

synchronous Acknowledge response. Processing ends here.

– If 2: 2
st
 iteration of a loop in the Envelope route, the Envelope must be refused by

issuing a permanent/final Result Status 429 (Too Many Requests, Possible Loop)

synchronous Acknowledge response. Processing ends here.

At this point, the FLUX system receiving a Message Envelope must make sure

asynchronous processing is possible, so it will be able to report any permanent/final

status to the Envelope originator MSG@FR later. Message Envelopes fully qualify

53

their originator address MSG@FR. So, the FLUX system must look up its Routing

Table for a suitable route towards MSG@FR, no matter the MSG@DF value, as

explained in chapter on the Routing Algorithm. If no suitable route is found, the

Envelope must be refused by issuing a Result Status 412 (Unknown Return Route)

synchronous Acknowledge response. The FLUX system should remember this

status in its Message Envelope status store at least until MSG@TODT, so as to be

able to respond quickly in case it later receives a duplicate of the same Envelope.

Starting from this point, the FLUX system may perform the additional checks in any

order. At any point, it may decide to defer all subsequent processing steps to happen

asynchronously, simply by:

– Storing the received Envelope for later (asynchronous) processing, and

– Responding immediately with a synchronous temporary Result Status 202

(Accepted) Acknowledge response, and

– Wrapping any further permanent/final Acknowledge response it has for the

Message Envelope into a Status Envelope to be scheduled for asynchronous

transmission using a STAT(MSG@FR,MSG@ON) recurring timer firing

repeatedly long after MSG@TODT until its transmission is successful, with:

STAT@AD = MSG@FR

STAT@ON = MSG@ON

If the system is unable to store the received Envelope, it must reject it by issuing a

non-permanent/non-final Result Status 507 (Insufficient Storage) synchronous

Acknowledge response and processing must stop there.

In general, not all clients are allowed to send anything. In the same way,

intermediary Nodes are usually not allowed to just relay everything they receive.

FLUX system administrators must maintain on their system a list of authorized

traffic, a list of combinations of these values:

(a) A Message originator (MSG@FR)

(b) A Message Dataflow (MSG@DF)

(c) An Authorized upstream client Node or Endpoint (client certificate)

Message Envelopes originating from upstream (client) systems (as identified from

the client certificate) that are not authorized for the particular Envelope (as

identified by the combination of MSG@FR and MSG@DF values) must be refused

by issuing a Result Status 403 (Forbidden, Authorization Required) synchronous

Acknowledge response. The FLUX system should remember this status in its

Message Envelope status store at least until MSG@TODT, so the same Message

Envelope can be retried after the missing authorizations have been granted in all

intermediary Nodes.

Note:

– It is extremely important that the system receiving a Message Envelope

directly from its originator (the 1
st
 system on the route to the destination,

usually the Parent Node of the originator Endpoint) checks that the client

54

certificate and MSG@FR value are compatible one with the other. This is

because it's the only system to know the client certificate of the originator,

as this information is not passed over to further Nodes and Endpoints along

the route. Unless some digital signature is embedded inside the business

payload, all other systems can only trust the MSG@FR value present in the

Envelope matches the identity of the genuine business message originator.

A FLUX system which receives a Message Envelope and accepts to process it

should always try to determine synchronously whether it is the final destination

Endpoint for the Message Envelope or not, e.g. based on the MSG@AD and

MSG@DF values and/or the actual XML namespace of the embedded business

message.

(a) If it is the final destination, the system must respond with a Result Status

201 (Acknowledge-of-Receipt) Acknowledge, and it should try to do it

synchronously. Then, it must extract the business message and a few key

values from the Envelope such as MSG@FR and submit this information

to the local business layer in charge of the particular business message. It

must also store this Result Status in its Message Envelope status store, so

that it can detect and drop any Message Envelope duplicates it may

receive later (containing identical MSG@FR and MSG@ON values).

(b) If not, the system must respond with a synchronous Result Status 202

(Accepted) Acknowledge response and prepare for asynchronous

forwarding as explained in the following sections.

The reason for doing so is explained in the chapter on Potential issues not using the

Simplified Process. However, if it is deemed too costly to do this verification

synchronously, then the system may defer it to the asynchronous loop and issue a

Result Status 202 (Accepted) synchronous Acknowledge response instead. In that

case, a separate Status Envelope containing a Result Status 201 (Acknowledge-of-

Receipt) Acknowledge message shall be crafted and posted asynchronously, if

necessary.

Note:

– Message Envelopes support destination address abstraction, whereby the

final destination will depend on the combination of MSG@AD and

MSG@DF values in the Envelope. As a result, final destination Endpoint

must not only process those Envelopes where MSG@AD matches the

Endpoint Fully qualified FLUX address exactly. Instead, an Endpoint must

consider that any Envelope is eligible for local processing if MSG@AD is

equal to a parent Domain address of the Endpoint and a business process is

available to process the business payload inside the Envelope. The

rationale for this is that, the Envelope had to cross all parent Domain

Nodes before reaching the destination Endpoint, and parent Nodes only

forward the Envelope to those sub-Domain child Node/Endpoint who have

received authority for processing the Envelope depending on its business

contents as identified by the Dataflow name.

55

8.1.2. Receiving a Message Envelope from a local business layer

A FLUX system receiving a Message Envelope from a local business layer should

first decide whether the Envelope should be processed locally or if it needs to be

forwarded to a remote system. The logic driving this decision is implementation

dependant so it is not discussed in this document.

Assuming the Message Envelope is to be forwarded to a remote system, the

business layer at the origin of the Message Envelope must somehow be identified

and the Envelope MSG@ON value must be associated with it in a Message

Envelope business-identity store and remembered at least until MSG@TODT.

Then, processing continues as described in the next chapter. Any permanent/final

status associated with this Message Envelope shall be reported back to the

originating business layers as identified by looking up the Message Envelope

business-identity store.

8.1.3. Asynchronously forwarding a Message Envelope

A FLUX system receiving a Message Envelope to be forwarded must look up the

combination of MSG@AD and MSG@DF values in its Routing table to determine

the next-hop (intermediary or final) system towards the final destination, according

to the rules described in the chapter on the Routing Algorithm. If no acceptable

route is found, the Envelope must be refused by issuing a Result Status 412

(Unknown Return Route) synchronous Acknowledge response. The FLUX system

shall remember this status in its Message Envelope status store at least until

MSG@TODT, so it can respond quickly should it later receive duplicates of the

same Envelope.

Once an acceptable route is found, the system must create a

MsgTimer(MSG@FR,MSG@ON) recurring timer to attempt forwarding the

Envelope towards the next-hop system. This timer should fire regularly but no later

than at MSG@TODT-MSG@TO, so that no forwarding attempt will linger at

MSG@TODT. Successive timer executions must be at least MSG@TO apart to

guarantee that multiple transmission attempts will never run concurrently on any

given Envelope. The system must devise an appropriate timer periodicity so that it

fires at least 3 times unless available time is too short. If the Envelope does not

specify a MSG@TO value, the system default synchronous timeout configuration

parameter value must be used instead. Each time the timer executes, it will make a

transmission attempt. Depending on the outcome:

(a) Temporary transmission errors (both HTTP and FLUX temporary errors,

as explained in the chapter on FLUX Synchronous Response) of Message

Envelopes are reported by email to MSG@CT only if MSG@VB is INFO

or DEBUG, and nothing else happens. When the timer detects it had fired

for the last time, it must craft a Status Envelope indicating a Result Status

599 (Message Timeout), store this status in its Message Envelope status

store and schedule the asynchronous transmission of the Status Envelope

by creating for it a StatTimer(MSG@FR,MSG@ON) recurring timer

firing repeatedly long after MSG@TODT until its transmission is

successful. Finally, if MSG@VB is INFO or DEBUG, an email should be

sent to MSG@CT to inform them of the outcome. If the response

contained a Not Ready Before time ACK@RDYDT, the next transmission

56

attempt should be delayed until that moment. If ACK@RDYDT is after

MSG@TODT-MSG@TO, then the timer can no longer fire so the system

must behave as explained above (Message Timeout).

(b) Once a permanent transmission status is obtained from the next-hop Node

for the Message Envelope, the recurring timer is deleted. If a HTTP 4xx

responses are converted to FLUX Acknowledge 400. The status is then

stored in its Message Envelope status store and a Status Envelope is

crafted (as explained in the chapter on FLUX Asynchronous Response)

and scheduled for later asynchronous transmission by creating a

STAT(MSG@FR,MSG@ON) recurring timer firing repeatedly long after

MSG@TODT until its transmission is successful. Finally, if MSG@VB is

INFO or DEBUG, an email should be sent to MSG@CT to inform them of

the outcome.

If MSG@AR is True and MSG@VB is not NONE and if the system has a direct

route to MSG@FR Endpoint, then the system must also create another timer

MsgTimeoutTimer(MSG@FR,MSG@ON) firing once at MSG@TODT to send a

"Timeout Error" email to MSG@CT people if no permanent/final status is known

for the Message Envelope at that time.

8.2. FLUX Operation upon receiving a Status Envelope

8.2.1. Receiving a Status Envelope from a remote system

Assuming the received Status Envelope passed client authentication checks, its

processing steps are fundamentally different from those of a Message Envelope.

If implementing the optional loop detection algorithm described at the end of the

chapter on the Routing Algorithm, the FLUX system must remember the identity of

the client which has submitted the Envelope. Ideally, the client system Fully

Qualified FLUX address should be derived from the client certificate. Then, the

system must look up the Status Envelope loop-detection store to see if this same

Status Envelope identified with STAT@AD and STAT@ON values has already

been received from the same client. If not, it will store the client identifier,

STAT@AD and STAT@ON values in the Status Envelope loop-detection store

with a counter value of 0. If so, it will increase the stored counter value. Then,

depending on the stored counter value:

– If 0: no loop detected, the system continues Envelope processing as described

below.

– If 1: 1
st
 iteration of a loop in the Envelope route, the Envelope must be refused by

issuing a non-permanent/non-final Result Status 508 (Loop Detected)

synchronous Acknowledge response. Processing ends here.

– If 2: 2
st
 iteration of a loop in the Envelope route, the Envelope must be refused by

issuing a permanent/final Result Status 429 (Too Many Requests, Possible Loop)

synchronous Acknowledge response. Processing ends here.

Note:

57

– Message Envelope loop-detection store and Status Envelope loop-detection

store are two different stores (i.e. two different database tables).

Status Envelopes never originate from a business layer. A FLUX system which

receives a Status Envelope from a remote system and accepts to process it should

always store the embedded status information (ACK@RS, ACK@RE, ACK@FR)

into its Message Envelope status store in association with STAT@AD and

STAT@ON values, so it can find it back if it later receives a duplicate of the

correlated Message Envelope. Newly received status information will overwrite

previously stored ones. If the system is unable to store this information, it must

reject the Envelope by issuing a non-permanent/non-final Result Status 507

(Insufficient Storage) synchronous Acknowledge response.

Assuming the status information could be stored, the system must then respond with

a Result Status 202 (Accepted) synchronous Acknowledge response.

Then, the system must determine whether it is the final destination Endpoint for the

Status Envelope or not, by comparing STAT@AD (a fully Qualified FLUX address)

with its own Fully Qualified FLUX Address. If these match exactly, it must try to

identify the business layer from which the correlated Message Envelope originated,

by looking up STAT@ON in the Message Envelope business-identity store.

(c) If it is the final destination and identifies a corresponding business layer,

it reports the status information to this business layer.

(d) If it is the final destination but could not identify any corresponding

business layer, the processing ends there.

(e) If the system is not the final destination for the Status Envelope, it will

prepare for asynchronous forwarding as explained below.

Notes:

– If a permanent/final status was stored previously about the same Message

Envelope, then the Result Status code inside the newly received Status

Envelope ACK@RS is necessarily the same value, unless the previously

stored values was 401. ACK@RE could be different.

– Upon receiving a Status Envelope, Endpoints could return Result Status

201 (Acknowledge-of-Receipt) instead of 202. But it serves no real

purpose because Acknowledgement messages for Status Envelopes don't

propagate asynchronously, meaning there is no Acknowledge-of-Receipt

for Status Envelopes to be reported back to the Status Envelope sender.

– The stability of the FLUX network depends on the network being able to

notify of misconfiguration or misbehaving of any system in the network.

Therefore, it is essential that Status Envelopes are allowed to flow freely

across all Nodes. Nodes must accept to relay all Status Envelopes they

receive from any client system they trust, no matter the original Envelope

originator. See the chapter on security for more details.

58

8.2.2. Asynchronously forwarding a Status Envelope

Status Envelopes do not support destination address abstraction, so STAT@AD is

always a Fully Qualified FLUX Address. The system must look up the STAT@AD

values in its Routing table to determine the next-hop (intermediary or final) system

towards the final destination, according to the rules described in the chapter on the

Routing Algorithm. If no acceptable route is found, the Envelope must be refused

by issuing a Result Status 412 (Unknown Return Route) synchronous Acknowledge

response. Local system administrators must be informed of the failure. At the same

time, business contacts STAT@CT must be updated by email:

– If the status reports a failure (ACK@RS>=400) and STAT@VB is not NONE.

– If the status reports a success (ACK@RS=201) and STAT@VB is WARN, INFO

or DEBUG.

Once an acceptable route is found, the system must create a

StatusTimer(STAT@AD,STAT@ON) recurring timer to attempt forwarding the

Envelope towards the next-hop system. This timer should fire regularly and should

continue to fire long after STAT@TODT has elapsed. Successive timer executions

must be at least STAT@TO apart to guarantee that multiple transmission attempts

will never run concurrently on any given Envelope. The system must devise an

appropriate timer periodicity so that it fires at least 3 times before STAT@TODT-

STAT@TO, unless available time is too short. If the Envelope does not specify a

STAT@TO value, the system uses the default synchronous timeout configuration

parameter value. Each time the timer executes it will make a transmission attempt.

Depending on the outcome:

(a) Temporary transmission errors (both HTTP and FLUX temporary errors,

as explained in the chapter on FLUX Synchronous Response) of Status

Envelopes are reported by email to STAT@CT only if STAT@VB is

INFO or DEBUG, and nothing else happens. When the timer detects the

next time it will fire will be after STAT@TODT-STAT@TO, it must

inform business contacts STAT@CT by email depending on the

STAT@VB value, exactly like explained above in the case of status 412.

If the response contained a Not Ready Before time ACK@RDYDT, the

next transmission attempt should be delayed until that moment. When the

timer detects it had fired for the last time, it must inform the failing next-

hop system administrator of the problem by email.

(b) Once a permanent transmission status is obtained from the next-hop Node

for the Status Envelope, the recurring timer is deleted. Permanent failures

must be notified to business contacts STAT@CT by email depending on

the STAT@VB value, exactly like explained above in the case of status

412. Additionally, the failing next-hop system administrator must be

informed of the problem by email.

Notes:

– Result Status codes resulting from a transmission attempt of a Status

Envelope are never stored in the Message Envelope status store.

59

– Notification of success uses a Warning email whereas notification of

failures use an Error email. These different types of emails should look

reasonably different one from the other so that their relative importance is

understood.

– Logic can be implemented so as to reduce the amount of emails sent to

business contacts and remote system administrators. Description of this

logic is outside of the scope of this document.

60

Contents

1. INTRODUCTION ... 1

2. DISCLAIMER ... 1

3. VERSION AND HISTORY .. 2

4. PRINCPLES OF THE FLUX TRANSPORT PROTOCOL 2

4.1. Envelope Types ... 2

4.2. Working through Intermediary Nodes ... 2

4.3. Token-based Operation ... 4

4.4. Transport-level Retransmissions ... 6

5. TRANSMISSION SCENARIOS USING THE FLUX TRANSPORT

PROTOCOL .. 8

5.1. Basic Workflow ... 8

5.2. Reliable Messaging ... 9

5.3. Workflow variations .. 12

5.4. Potential issues not using the Simplified Process .. 21

5.5. Problems with Chained Routes ... 26

6. DETAILED PROTOCOL DESCRIPTION .. 30

6.1. Hierarchical Addressing .. 30

6.2. Routing Algorithm ... 32

6.3. SOAP Standard .. 36

6.4. FLUX Request ... 36

6.5. FLUX Synchronous Response .. 38

6.6. FLUX Asynchronous Response .. 41

6.7. Summary of Envelope Attributes .. 41

6.8. FLUX Timeouts ... 42

6.9. FLUX Operation upon receiving any Envelope from a remote system 45

7. SECURITY ... 46

7.1. Non-use of WS Security .. 46

7.2. Mutual Authentication based on Digital Certificates 46

7.3. Client Authorization using Client White-List ... 48

7.4. Security concerns with Status Envelopes .. 49

7.5. Security concerns when chaining multiple Nodes ... 50

61

8. FLUX PROTOCOL OPERATION ... 52

8.1. FLUX Operation upon receiving a Message Envelope 52

8.1.1. Receiving a Message Envelope from a remote system 52

8.1.2. Receiving a Message Envelope from a local business layer 55

8.1.3. Asynchronously forwarding a Message Envelope 55

8.2. FLUX Operation upon receiving a Status Envelope 56

8.2.1. Receiving a Status Envelope from a remote system 56

8.2.2. Asynchronously forwarding a Status Envelope................................. 58

